• Title/Summary/Keyword: Database and statistics

Search Result 435, Processing Time 0.027 seconds

A Study on Characteristics of Maintenance and Standarization Plan Concerned with DB of Retainging Wall (옹벽 구조물의 표준 DB화 방안 및 유지관리 특성 연구)

  • Lee, Song;Shim, Min-Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.129-140
    • /
    • 2000
  • Retaining wall is a constructed structure in order to construct road, rail, building for effective use and obtainments of the limited ground. Recently, many kinds of research have been actively developed for a standardization and information to the maintenance and management of bridge, tunnel, road. With the works of database construction of that, many kinds of data with respect to statistics is cumulated. Database work of retaining wall is wholly lacking and lagged behind in the works of database construction. This paper suggests classification system on inspection data. On the basis of that, code work with classification system was practised and DB program of inspection data of retaining wall was developed. And input work for a data of maintenance and management was practised. The purpose of this paper is to suggest a kind of statistics data and investigate a characteristics of inspection using statistic data on retaining wall.

  • PDF

Industrial Waste Database Analysis Using Data Mining Techniques

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.455-465
    • /
    • 2006
  • Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, and relation to new rule. The methods of data mining are decision tree, association rules, clustering, neural network and so on. We analyze industrial waste database using data mining technique. We use k-means algorithm for clustering and C5.0 algorithm for decision tree and Apriori algorithm for association rule. We can use these outputs for environmental preservation and environmental improvement.

  • PDF

Waste Database Analysis Joined with Local Information Using Decision Tree Techniques

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.164-173
    • /
    • 2005
  • Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are decision tree, association rules, clustering, neural network and so on. The decision tree approach is most useful in classification problems and to divide the search space into rectangular regions. Decision tree algorithms are used extensively for data mining in many domains such as retail target marketing, fraud detection, data reduction and variable screening, category merging, etc. We analyze waste database united with local information using decision tree techniques for environmental information. We can use these decision tree outputs for environmental preservation and improvement.

  • PDF

Industrial Waste Database Analysis Using Data Mining

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.241-251
    • /
    • 2006
  • Data mining is the method to find useful information for large amounts of data in database It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are decision tree, association rules, clustering, neural network and so on. We analyze industrial waste database using data mining technique. We use k-means algorithm for clustering and C5.0 algorithm for decision tree and Apriori algorithm for association rule. We can use these analysis outputs for environmental preservation and environmental improvement.

  • PDF

Mathematical Foundations and Educational Methodology of Data Mining (데이터 마이닝의 수학적 배경과 교육방법론)

  • Lee Seung-Woo
    • Journal for History of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.95-106
    • /
    • 2005
  • This paper is investigated conception and methodology of data selection, cleaning, integration, transformation, reduction, selection and application of data mining techniques, and model evaluation during procedure of the knowledge discovery in database (KDD) based on Mathematics. Statistical role and methodology in KDD is studied as branch of Mathematics. Also, we investigate the history, mathematical background, important modeling techniques using statistics and information, practical applied field and entire examples of data mining. Also we study the differences between data mining and statistics.

  • PDF

Development and Management of Database for School Health Improvement (학교보건 증진을 위한 데이터베이스의 개발 및 관리)

  • Choung Hye Myoung
    • Journal of Korean Public Health Nursing
    • /
    • v.18 no.1
    • /
    • pp.154-166
    • /
    • 2004
  • The purpose of this study was to design and implementation of database for school health activity. This database system was designed stand-alone application for college school health center without a hospital affiliation and the database system was made of relational database management system, Microsoft access 2000 to be made GUI (Graphic user interface) type design and made up 7 tables: patients. symptoms. departments, income and outgo. medical cures. and medicine. The construction of this database system was patient management. code management. medicine management. and statistics management. The results of the database system were as follows; 1) This database system could be used for college school health center. 2) This database system could be made correct statistic data. 3) This database system could be managed income and outgo. 4) This database system could be changed for the better activity of community health service. 5) This database system could be simply attired administrative system. This database system will be used for students and employees to protect and promote health to measure for health level and quality of health service. In conclusion. this database system can be applied for unit health center to manage the college school health activity and advanced data management can be applied for health profession to do quality improvement. cost containment. management information system. and decision support system.

  • PDF

Theoretical Peptide Mass Distribution in the Non-Redundant Protein Database of the NCBI

  • Lim Da-Jeong;Oh Hee-Seok;Kim Hee-Bal
    • Genomics & Informatics
    • /
    • v.4 no.2
    • /
    • pp.65-70
    • /
    • 2006
  • Peptide mass mapping is the matching of experimentally generated peptides masses with the predicted masses of digested proteins contained in a database. To identify proteins by matching their constituent fragment masses to the theoretical peptide masses generated from a protein database, the peptide mass fingerprinting technique is used for the protein identification. Thus, it is important to know the theoretical mass distribution of the database. However, few researches have reported the peptide mass distribution of a database. We analyzed the peptide mass distribution of non-redundant protein sequence database in the NCBI after digestion with 15 different types of enzymes. In order to characterize the peptide mass distribution with different digestion enzymes, a power law distribution (Zipfs law) was applied to the distribution. After constructing simulated digestion of a protein database, rank-frequency plot of peptide fragments was applied to generalize a Zipfs law curve for all enzymes. As a result, our data appear to fit Zipfs law with statistically significant parameter values.

Proving an Object-Oriental interface on a Relational Database System for Switching Systems (교환기용 관계형 데이타베이스 시스템상에서의 객체지향 인터페이스 제공 기법)

  • Jeong, Hui-Taek;Lee, Gil-Haeng;Jo, Ju-Hyeon;Kim, Yong-Min;Lee, Do-Heon;No, Bong-Nam
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.1
    • /
    • pp.29-53
    • /
    • 1997
  • Conventional switching systems have been using flat file systems or relational database systems to deal with their operational data. However, newly emerged requirements for advanced switching systems make relational database systems no longer proper solutions. This paper defines object-oriented interfaces that effectively incorporate data characteristics of switching systems. In addition, it exemplifies how the method works on an actual database systems for the TDX-10 switching system.

  • PDF

Efficient Management of Statistical Information of Keywords on E-Catalogs (전자 카탈로그에 대한 효율적인 색인어 통계 정보 관리 방법)

  • Lee, Dong-Joo;Hwang, In-Beom;Lee, Sang-Goo
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.4
    • /
    • pp.1-17
    • /
    • 2009
  • E-Catalogs which describe products or services are one of the most important data for the electronic commerce. E-Catalogs are created, updated, and removed in order to keep up-to-date information in e-Catalog database. However, when the number of catalogs increases, information integrity is violated by the several reasons like catalog duplication and abnormal classification. Catalog search, duplication checking, and automatic classification are important functions to utilize e-Catalogs and keep the integrity of e-Catalog database. To implement these functions, probabilistic models that use statistics of index words extracted from e-Catalogs had been suggested and the feasibility of the methods had been shown in several papers. However, even though these functions are used together in the e-Catalog management system, there has not been enough consideration about how to share common data used for each function and how to effectively manage statistics of index words. In this paper, we suggest a method to implement these three functions by using simple SQL supported by relational database management system. In addition, we use materialized views to reduce the load for implementing an application that manages statistics of index words. This brings the efficiency of managing statistics of index words by putting database management systems optimize statistics updating. We showed that our method is feasible to implement three functions and effective to manage statistics of index words with empirical evaluation.

  • PDF

Analysis of Impact Between Data Analysis Performance and Database

  • Kyoungju Min;Jeongyun Cho;Manho Jung;Hyangbae Lee
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.3
    • /
    • pp.244-251
    • /
    • 2023
  • Engineering or humanities data are stored in databases and are often used for search services. While the latest deep-learning technologies, such like BART and BERT, are utilized for data analysis, humanities data still rely on traditional databases. Representative analysis methods include n-gram and lexical statistical extraction. However, when using a database, performance limitation is often imposed on the result calculations. This study presents an experimental process using MariaDB on a PC, which is easily accessible in a laboratory, to analyze the impact of the database on data analysis performance. The findings highlight the fact that the database becomes a bottleneck when analyzing large-scale text data, particularly over hundreds of thousands of records. To address this issue, a method was proposed to provide real-time humanities data analysis web services by leveraging the open source database, with a focus on the Seungjeongwon-Ilgy, one of the largest datasets in the humanities fields.