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Abstract

Peptide mass mapping is the matching of experimentally
generated peptides masses with the predicted masses of
digested proteins contained in a database. To identify
proteins by matching their constituent fragment masses
to the theoretical peptide masses generated from a protein
database, the peptide mass fingerprinting technique is
used for the protein identification. Thus, it is important to
know the theoretical mass distribution of the database.
However, few researches have reported the peptide mass
distribution of a database. We analyzed the peptide mass
distribution of non-redundant protein sequence database
in the NCBI after digestion with 15 different types of
enzymes. In order to characterize the peptide mass
distribution with different digestion enzymes, a power law
distribution (Zipf's law) was applied to the distribution. After
constructing simulated digestion of a protein database,
rank-frequency plot of peptide fragments was applied to
generalize a Zipf's law curve for all enzymes. As a resullt,
our data appear to fit Zipf's law with statistically significant
parameter values.

Keywords: peptide mass, non-redundant protein database,
Zipf's law

Introduction

Proteins are responsible for an organism's phenotype and
function. Proteins can be identified using electrophoresis
that separates proteins based on their isoelectric points
and molecular weights on polyacrylamide gels, like two-
dimensional polyacrylamide-gel electrophoresis (2D
PAGE) (O'Farrell, 1975). For efficient identification of
proteins, mass spectrometry (MS) has become the powerful
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method for the rapid speed and characterization of
post-translational modification (Blackstock and Weir,
1999). Matrix-assisted laser-desorption-ionization-time-
of-flight (MALDI-TOF) mass spectrometry is usually used
for peptide mass fingerprinting (PMF) (Henzel ef al., 1993).
The masses of peptides that came from an in-gel
proteolytic digestion are searched against the protein
sequence databases by used enzyme with cleavage rule.
The protein sequence database was precisely digested by
several kinds of enzymes and calculated by mass values
of amino acids. Trypsin is usually the default enzyme and
some proteomic programs do not include any enzyme.
Experimental or Computational peptide values are 'average'
or 'monoisotopic’ mass as ratio of isotope.

Zipf's law (Zipf, 1949) is the word usage in natural
languages, which follows a power-law function as a
rank-frequency distribution. If each word of a language
has a frequency in a large corpus, and them the list
words in order of their frequency of occurrence, we can
observe the relationship between the frequency of a
word rand its position in the list as rank ,{Manning and
Schutze, 1999). There is a constantk such as 7- ;= %
Zipf's plot was exhibited linguistic, social, economic data
should be a straight line with slope -1. The abundances
of expressed gene follow a power-law distribution with
an exponent close to -1 in the SAGE (Serial Analysis of
Gene Expression) data (Furusawa and Kaneko, 2003).
Protein domains were ranked by the frequency of their
connectivity and then found that the curve is similar to a
generalized Zipf's law curve in the Prosite, ProDom and
Pfam domain databases (Wuchty, 2001). It was found
that highly connected Inter Pro domains were observed
in the five organisms using topology of domain networks.
Mantegna (Mantegna, ef al., 1994) reported that the
noncoding regions are more similar to natural languages
that the coding region of DNA. Distribution of RNA
secondary structures for several lengths also gocod fitted
into the power-law distribution.

Zipf's law derived from the word usage in natural
language and was applied to cultural sciences, but
biological data also has been followed rank-frequency
distribution by several studies. We performed that
peptide fragments were obtained from non-redundant
protein sequence database in NCBI and digested
protein sequences with 15 enzymes. After constructing
simulated digestion of a protein database, rank-frequency
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plot of peptide fragments was able to generalize the Zipf's
law curve for all enzymes.

Materials and Methods

Non-redundant protein database were downloaded from
NCBI (National Center for Biotechnology Information)
website (ftp://ftp.ncbi.nih.gov/blast/db/FASTA/). All
3,154,491 fasta sequences were subjected to digest
using enzymes. Enzymes and cleavage rules were listed
up in Table 1. Fifteen digested peptide fragment database
by enzymes were assigned ranks and frequencies by
mass of fragments. We can explore the relationship
between the frequency of a domain f and its position in the
list, known asitsrankr. f - r = k, where & is constant. The
relationship is described by a power-law that f means the
frequency of size of peptide fragment and z is rank of
determined from this frequency in the equation f = az™°
orlogf =loga - blogz. Rank-frequency plot usually shows
a straight line on doubly logarithmic axes. We examined
fitness of power-law distribution using linear regression

Table 1. Enzymes and cleavage rules

model because equation of logf = loga - blogz is same as
typical form of regression model (y =ax+ 8+ ¢). Thisis
easily achieved using regression model on the ioge
frequency versus loge rank transformed data. The term
represents the unpredicted or unexplained variation in the
response variable; it is conventionaily called the "error
term” whether it is really a measurement error or not. The
error term is conventionally assumed to have expected
value equal to zero, as a nonzero expected value could be
absorbed into «.. We estimated «, 3 parameter values in
the plot of Zipf's law using the least square method and
examined whether parameter values have statistical
significance. It is also performed to examine of the
residuals (the deviations from the fitted line to the
observed values of log f) using residual plots for fitting a
group of data. Statistical analysis used the R package
(http://www.r-project.org/).

Results and Discussion

The rank-frequency plots in all the 15 peptide sequence

Enzyme Cleavage site Exception
Trypsin C-terminal side of Kor R .
Trypsin (without exception) C-terminal side of Kor R fPis CtemtoKorR
LysC C-terminal side of K
CNBr C-terminal side of M
ArgC C-terminal side of R .
AspN N-terminal side of D IfPis Ctemto R
Asp N + N-terminal Glu N-terminal side of D or E
Glu C (bicarbonate) C-terminal side of £ If Pis C-termto E, or if E is Cterm to D or E
Glu C (phosphate) C-terminal side of D or E . iy
' ; ; IfPis C-termto D or E, or if Eis Ctermto D or E
Chymotrypsin (Low) C-terminal side of F, L, M, W, Y . 2
L . . fPisCtermtoF, L, M, W, Y, ifPis N-termto Y
Chymotrypsin (High) C-terminal side of F, Y, W . A
Trypsin/Chymotrypsin C-terminal side of K, R, F, Y, W :I IE :z 8:e$ ’:g E E szg '\:/\I/niy F:’t?rm-ttc;:r/n oY
Pepsin (pH 1.3) C-terminal side of F, L e SARERERL L
Pepsin (pH > 2) C-terminal side of F, L, W, Y, A E, Q
Proteinase K C-terminal side of A, C, G, M,F, S, Y, W

Table 2. Slopes, intercept values, R value and p-values of 15 rank-frequency plots.

Enzyme Slope intercept R2 value P-value
Trypsin -0.93 15.3 0.9975 <2e-16
Trypsin (without exception) -0.95 15.55 0.998 <2e-16
LysC -0.88 14.04 0.998 <2e-16
CNBr -0.79 12.09 0.9957 <2e-16
ArgC -0.86 13.93 0.9986 <2e-16
AspN -0.92 134 0.9968 <2e-16
Asp N + N-terminal Glu -0.93 154 0.9976 <2e-16
Glu C (bicarbonate) -0.69 522 0.9684 <2e-16
Glu C (phosphate) -0.91 15.21 0.9977 <2e-16
Chymotrypsin (Low) -1.02 16.79 0.9948 <2e-16
Chymotrypsin (High) -0.88 14.68 0.9973 <2e-16
Trypsin/Chymotrypsin -1.03 16.85 0.9952 <2e-16
Pepsin (pH 1.3) -0.95 15.66 0.9976 <2e-16
Pepsin (pH > 2) -1.23 18.67 0.996 <2e-16
Proteinase K -1.23 18.67 0.995 < 2e-16
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Fig. 1. Rank-Frequency distribution and the residual plot. (A) Trypsin with exception, (B) Asp N, (C) Pepsin (pH 1.3). 15
rank-frequency plots on log-log graph have closely similar patterns. The left side of plot is rank-frequency plots on log-log graph with
regression line (red line). The right side of plot is the residual plot of regression. Since all plots described nonrandom form, zipf's law
distribution doesn't determine the linearity of regression model
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Fig. 2. Size-Frequency distribution of the three enzymes. After determined size-frequency distribution from 15 enzymes digestion,
the patterns have nearly similar shape. However, the width of distributions was the difference between 15 enzymes. The more
cleavage sites digested by an enzyme, the narrower range obtained. (A) Lys C, (B) Asp N, (C) Pepsin (pH 1.3), (D) Trypsin without

exception, (E) Pepsin (pH > 2), (F) Proteinase K.

databases followed the famous Zipf's law curve. The
distribution of Zipf's law typically followed a power law

function with an exponent close to -1 (Zipf, 1949). The
most common method of verifying conformity to Zipf's



law is a linear regression on the l0ge-loge transformed
data set (Lu et al., 2005). The distribution has a similar
linear appearance when plot on a log-log graph, where -
b defines the slope in the equation of logf = loga - blogz.
Table 2 showed the parameter values and the p-values
of 15 rank-frequency plots. As illustrated in Fig. 1, our
regression showed a good fit, with significant parameter
values. The Zipf's plots of 15 peptide fragment databases
showed the power-law distribution with the exponent in
the range from -1.23 ~ -0.86. Luscombe et al. reported
that power-law function provides the best description
among linear, exponential, double-exponential, triple-
exponential, stretched-exponential and lognormal of a
wide group of properties associated with genomes
{Luscombe et al., 2002). We found that the overall
distributions are very similar against each peptide
fragment database. The high- and low-ranking masses
of peptide fragment get out of the regression line in Fig.
1. A residual plot is a scatter plot of the residuals and is
easier to see nonlinearity. If the regression model
represents the data correctly, the residuals are randomly
distributed around the line with zero mean (Moore and
McCabe, 2003). However, for nonlinearity related data,
the residual plot shows a systematic pattern, curve form.
Our 15 residual plots showed similar curve forms. In
other words, parameters were explained the Zipf's law in
the regression model but Zipf's law distribution doesn't
determine linearity of regression model. The Zipf's law
has been not exactly conformed to the linear model
because the line does not have linear forms in the data of
high and low ranks. Manning and Schutze noted that the
line is often a bad fit, especially for low and high ranks
and derives a more general relationship between rank
and frequency (Manning and Schutze, 1999). Kalda also
reported that the distribution of low variability periods in
the activity of human heart rate typically followed a
multi-scaling Zipfs law and presened a non-linear
time-series method (Kalda ef al., 2001). It has been
studying statistical model of Zipf's law.

Size distribution and Zipf's law plot show nearly
similar patterns. The size distribution has a trend which
guides cleavage sites to more frequencies and smaller
sizes (Fig. 2). These size-frequency distributions have
maijority of which are covered a wide range relative to the
majority of distribution with only one cleavage site. For
example, Pepsin (pH > 2) and Proteinase K cleave the
C-terminal side of F,L, W, T, A, E, Qand that of A, C, G,
M, F, S, Y, W, respectively. Pepsin has different
cleavage sites by pH; Pepsin (pH 1.3) and pepsin (pH
>2) cleave C-terminal side of F, L and that of F, L, W, Y,
A, E, Q without exception. The shape of size-frequency
distribution of pepsin (pH > 2) has more narrow than that
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of pepsin (pH 1.3). Fig. 2 showed that the more cleavage
sites digested by an enzyme, the smaller range obtained.
Both high-ranking (common) and low-ranking (rare)
words are not good candidates for keywords in database
search and information retrieval (Luhn, 1957). Using this
theory, Zipf's law normalization is also a useful tool than
existing published normalization methods in microarray
(Lu et al., 2005). Several analyses have studied the
relationship of power law and biological or medical
datasets. We determined the applicability of Zipf's law
using frequencies of mass of peptide fragment by 15
enzymes. Our resullts also followed a power law distribution
and were described by a simple mathematical model.
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