• Title/Summary/Keyword: Database Mining

Search Result 574, Processing Time 0.028 seconds

A Comparison of Clustering Algorithm in Data Mining

  • Lee, Yung-Seop;An, Mi-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.725-736
    • /
    • 2003
  • To provide the information needed to make a decision, it is important to know the relationship or pattern between variables in database. Grouping objects which have similar characteristics of pattern is called as cluster analysis, one of data mining techniques. In this study, it is compared with several partitioning clustering algorithms, based on the statistical distance or total variance in each cluster.

  • PDF

BAYESIAN CLASSIFICATION AND FREQUENT PATTERN MINING FOR APPLYING INTRUSION DETECTION

  • Lee, Heon-Gyu;Noh, Ki-Yong;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.713-716
    • /
    • 2005
  • In this paper, in order to identify and recognize attack patterns, we propose a Bayesian classification using frequent patterns. In theory, Bayesian classifiers guarantee the minimum error rate compared to all other classifiers. However, in practice this is not always the case owing to inaccuracies in the unrealistic assumption{ class conditional independence) made for its use. Our method addresses the problem of attribute dependence by discovering frequent patterns. It generates frequent patterns using an efficient FP-growth approach. Since the volume of patterns produced can be large, we propose a pruning technique for selection only interesting patterns. Also, this method estimates the probability of a new case using different product approximations, where each product approximation assumes different independence of the attributes. Our experiments show that the proposed classifier achieves higher accuracy and is more efficient than other classifiers.

  • PDF

TIME SERIES PREDICTION USING INCREMENTAL REGRESSION

  • Kim, Sung-Hyun;Lee, Yong-Mi;Jin, Long;Chai, Duck-Jin;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.635-638
    • /
    • 2006
  • Regression of conventional prediction techniques in data mining uses the model which is generated from the training step. This model is applied to new input data without any change. If this model is applied directly to time series, the rate of prediction accuracy will be decreased. This paper proposes an incremental regression for time series prediction like typhoon track prediction. This technique considers the characteristic of time series which may be changed over time. It is composed of two steps. The first step executes a fractional process for applying input data to the regression model. The second step updates the model by using its information as new data. Additionally, the model is maintained by only recent data in a queue. This approach has the following two advantages. It maintains the minimum information of the model by using a matrix, so space complexity is reduced. Moreover, it prevents the increment of error rate by updating the model over time. Accuracy rate of the proposed method is measured by RME(Relative Mean Error) and RMSE(Root Mean Square Error). The results of typhoon track prediction experiment are performed by the proposed technique IMLR(Incremental Multiple Linear Regression) is more efficient than those of MLR(Multiple Linear Regression) and SVR(Support Vector Regression).

  • PDF

Relation for the Measure of Association and the Criteria of Association Rule in Ordinal Database

  • Park, Hee-Chang;Lee, Ho-Soon
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.197-213
    • /
    • 2003
  • One of the well-studied problems in data mining is the search for association rules. The goal of association rule mining is to find all the rules with support and confidence exceeding some user specified thresholds. In this paper we consider the relation between the measure of association and the criteria of association rule for ordinal data.

  • PDF

Analyzing Customer Management Data by Data Mining: Case Study on Chum Prediction Models for Insurance Company in Korea

  • Cho, Mee-Hye;Park, Eun-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1007-1018
    • /
    • 2008
  • The purpose of this case study is to demonstrate database-marketing management. First, we explore original variables for insurance customer's data, modify them if necessary, and go through variable selection process before analysis. Then, we develop churn prediction models using logistic regression, neural network and SVM analysis. We also compare these three data mining models in terms of misclassification rate.

  • PDF

Analysis of Customer Behavior and Trend of Manufacture (제조업분야의 고객 성향 및 추이 분석)

  • Lee, Byoung-Yup;Yim, Seung-Bin;Park, Yong-Hoon;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.336-343
    • /
    • 2009
  • Companies often use database for performing task more efficiently and data mining for marketing and production efficiency through analyzing of the stored database. The use of the knowledge through the data mining maintains and provides a direction of development for the company. It could be as an additional competitive power for the company when decision making is necessary. This study is designing a model that predicts a rating of existing customer and consumption pattern with using actual data of the manufacturer and data mining methodology. The objective of this model is to improve profits for the company and brand value through connecting the marketing with identifying the customer's rating and consumer behavior.

Mining Trip Patterns in the Large Trip-Transaction Database and Analysis of Travel Behavior (대용량 교통카드 트랜잭션 데이터베이스에서 통행 패턴 탐사와 통행 행태의 분석)

  • Park, Jong-Soo;Lee, Keum-Sook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.44-63
    • /
    • 2007
  • The purpose of this study is to propose mining processes in the large trip-transaction database of the Metropolitan Seoul area and to analyze the spatial characteristics of travel behavior. For the purpose. this study introduces a mining algorithm developed for exploring trip patterns from the large trip-transaction database produced every day by transit users in the Metropolitan Seoul area. The algorithm computes trip chains of transit users by using the bus routes and a graph of the subway stops in the Seoul subway network. We explore the transfer frequency of the transit users in their trip chains in a day transaction database of three different years. We find the number of transit users who transfer to other bus or subway is increasing yearly. From the trip chains of the large trip-transaction database, trip patterns are mined to analyze how transit users travel in the public transportation system. The mining algorithm is a kind of level-wise approaches to find frequent trip patterns. The resulting frequent patterns are illustrated to show top-ranked subway stations and bus stops in their supports. From the outputs, we explore the travel patterns of three different time zones in a day. We obtain sufficient differences in the spatial structures in the travel patterns of origin and destination depending on time zones. In order to examine the changes in the travel patterns along time, we apply the algorithm to one day data per year since 2004. The results are visualized by utilizing GIS, and then the spatial characteristics of travel patterns are analyzed. The spatial distribution of trip origins and destinations shows the sharp distinction among time zones.

  • PDF

An Algorithm for Mining Association Rules by Minimizing the Number of Candidate 2-Itemset (후보 2-항목집합의 개수를 최소화한 연관규칙 탐사 알고리즘)

  • 황종원;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.48
    • /
    • pp.53-63
    • /
    • 1998
  • Mining for association rules between items in a large database of sales transaction has been described as an important data mining problem. The mining of association rules can be mapped into the problem of discovering large itemsets. In this paper we present an efficient algorithm for mining association rules by minimizing the total numbers of candidate 2-itemset, │C$_2$│. More the total numbers of candidate 2-itemset, less the time of executing the algorithm for mining association rules. The total performance of algorithm depends on the time of finding large 2-itemsets. Hence, minimizing the total numbers of candidate 2-itemset is very important. We have performed extensive experiments and compared the performance of our algorithm with the DHP algorithm, the best existing algorithm.

  • PDF

Hybrid Intelligent Web Recommendation Systems Based on Web Data Mining and Case-Based Reasoning

  • Kim, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.366-370
    • /
    • 2003
  • In this research, we suggest a hybrid intelligent Web recommendation systems based on Web data mining and case-based reasoning (CBR). One of the important research topics in the field of Internet business is blending artificial intelligence (AI) techniques with knowledge discovering in database (KDD) or data mining (DM). Data mining is used as an efficient mechanism in reasoning for association knowledge between goods and customers' preference. In the field of data mining, the features, called attributes, are often selected primary for mining the association knowledge between related products. Therefore, most of researches, in the arena of Web data mining, used association rules extraction mechanism. However, association rules extraction mechanism has a potential limitation in flexibility of reasoning. If there are some goods, which were not retrieved by association rules-based reasoning, we can't present more information to customer. To overcome this limitation case, we combined CBR with Web data mining. CBR is one of the AI techniques and used in problems for which it is difficult to solve with logical (association) rules. A Web-log data gathered in real-world Web shopping mall was given to illustrate the quality of the proposed hybrid recommendation mechanism. This Web shopping mall deals with remote-controlled plastic models such as remote-controlled car, yacht, airplane, and helicopter. The experimental results showed that our hybrid recommendation mechanism could reflect both association knowledge and implicit human knowledge extracted from cases in Web databases.

An Study on the Product Purchase Patterns using Association Rule (연관규칙을 활용한 상품 구매 패턴분석에 관한 연구)

  • Jung, Yong Gyu;Park, Jeong Kwon;Lee, Jeong Chan;Choi, Eun Young
    • Journal of Service Research and Studies
    • /
    • v.2 no.1
    • /
    • pp.39-46
    • /
    • 2012
  • It is growing in size of database in companies. This caused to develope data mining techniques to predictive information from the large database. Costs and other effects can give variety of sales exploding through the analysis of the differences. Analysis of the various classification techniques, various angle can be analyzed point of view of the area information. The analysis of rules and patterns associated with a large amount of useful information from the database can be analyzed effectively. Goods store were analyzed using association rules, one of the data mining analysis techniques. Through this type of existing products according to analyze customer buying patterns, data mining has been studied to establish strategic marketing analysis.

  • PDF