• Title/Summary/Keyword: DataMining

Search Result 4,045, Processing Time 0.029 seconds

The Efficient Spatio-Temporal Moving Pattern Mining using Moving Sequence Tree (이동 시퀀스 트리를 이용한 효율적인 시공간 이동 패턴 탐사 기법)

  • Lee, Yon-Sik;Ko, Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.2
    • /
    • pp.237-248
    • /
    • 2009
  • Recently, based on dynamic location or mobility of moving object, many researches on pattern mining methods actively progress to extract more available patterns from various moving patterns for development of location based services. The performance of moving pattern mining depend on how analyze and process the huge set of spatio-temporal data. Some of traditional spatio-temporal pattern mining methods[1-6,8-11]have proposed to solve these problem, but they did not solve properly to reduce mining execution time and minimize required memory space. Therefore, in this paper, we propose new spatio-temporal pattern mining method which extract the sequential and periodic frequent moving patterns efficiently from the huge set of spatio-temporal moving data. The proposed method reduces mining execution time of $83%{\sim}93%$ rate on frequent moving patterns mining using the moving sequence tree which generated from historical data of moving objects based on hash tree. And also, for minimizing the required memory space, it generalize the detained historical data including spatio-temporal attributes into the real world scope of space and time using spatio-temporal concept hierarchy.

Scenarios for Manufacturing Process Data Analysis using Data Mining (데이터 마이닝을 이용한 생산공정 데이터 분석 시나리오)

  • Lee, Hyoung-wook;Bae, Sung-min
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.41-44
    • /
    • 2013
  • Process and manufacturing data are numerously accumulated to the enterprise database in industries but little of those data are utilized. Data mining can support a decision to manager in process from the data. However, it is not easy to field managers because a proper adoption of various schemes is very difficult. In this paper, six scenarios are conducted using data mining schemes for the various situations of field claims such as yield problem, trend analysis and prediction of yield according to changes of operating conditions, etc. Scenarios, like templates, of various analysis situations are helpful to users.

  • PDF

Enhanced Genetic Programming Approach for a Ship Design

  • Lee, Kyung-Ho;Han, Young-Soo;Lee, Jae-Joon
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.4
    • /
    • pp.21-28
    • /
    • 2007
  • Recently the importance of the utilization of engineering data is gradually increasing. Engineering data contains the experiences and know-how of experts. Data mining technique is useful to extract knowledge or information from the accumulated existing data. This paper deals with generating optimal polynomials using genetic programming (GP) as the module of Data Mining system. Low order Taylor series are used to approximate the polynomial easily as a nonlinear function to fit the accumulated data. The overfitting problem is unavoidable because in real applications, the size of learning samples is minimal. This problem can be handled with the extended data set and function node stabilization method. The Data Mining system for the ship design based on polynomial genetic programming is presented.

Environmental Consciousness Data Modeling by Association Rules

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.115-124
    • /
    • 2004
  • Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are association rules, decision tree, clustering, neural network and so on. Association rule mining searches for interesting relationships among items in a given large data set. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary quality measures for association rule, support and confidence and lift. We analyze Gyeongnam social indicator survey data using association rule technique for environmental information discovery. We can use to environmental preservation and environmental improvement by association rule outputs.

  • PDF

A Better Prediction for Higher Education Performance using the Decision Tree

  • Hilal, Anwar;Zamani, Abu Sarwar;Ahmad, Sultan;Rizwanullah, Mohammad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.209-213
    • /
    • 2021
  • Data mining is the application of specific algorithms for extracting patterns from data and KDD is the automated or convenient extraction of patterns representing knowledge implicitly stored or captured in large databases, data warehouses, the Web, other massive information repositories or data streams. Data mining can be used for decision making in educational system. But educational institution does not use any knowledge discovery process approach on these data; this knowledge can be used to increase the quality of education. The problem was happening in the educational management system, but to make education system more flexible and discover knowledge from it huge data, we will use data mining techniques to solve problem.

Grid-based Biological Data Mining using Dynamic Load Balancing (동적 로드 밸런싱을 이용한 그리드 기반의 생물학 데이터 마이닝)

  • Ma, Yong-Beom;Kim, Tae-Young;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.81-89
    • /
    • 2010
  • Biological data mining has been noticed as an issue as the volume of biological data is increasing extremely. Grid technology can share and utilize computing data and resources. In this paper, we propose a hybrid system that combines biological data mining with grid technology. Especially, we propose a decision range adjustment algorithm for processing efficiency of biological data mining. We obtain a reliable data mining recognition rate automatically and rapidly through this algorithm. And communication loads and resource allocation are key issues in grid environment because the resources are geographically distributed and interacted with themselves. Therefore, we propose a dynamic load balancing algorithm and apply it to the grid-based biological data mining method. For performance evaluation, we measure average processing time, average communication time, and average resource utilization. Experimental results show that this method provides many advantages in aspects of processing time and cost.

SENSOR DATA MINING TECHNIQUES AND MIDDLEWARE STRUCTURE FOR USN ENVIRONMENT

  • Jin, Cheng-Hao;Lee, Yong-Mi;Kim, Hi-Seok;Pok, Gou-Chol;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.353-356
    • /
    • 2007
  • With advances in sensor technology, current researches on the pertinent techniques are actively directed toward the way which enables the USN computing service. For many applications using sensor networks, the incoming data are by nature characterized as high-speed, continuous, real-time and infinite. Due to such uniqueness of sensor data characteristics, for some instances a finite-sized buffer may not accommodate the entire incoming data, which leads to inevitable loss of data, and requirement for fast processing makes it impossible to conduct a thorough investigation of data. In addition to the potential problem of loss of data, incoming data in its raw form may exhibit high degree of complexity which evades simple query or alerting services for capturing and extracting useful information. Furthermore, as traditional mining techniques are developed to handle fixed, static historical data, they are not useful and directly applicable for analyzing the sensor data. In this paper, (1) describe how three mining techniques (sensor data outlier analysis, sensor pattern analysis, and sensor data prediction analysis) are appropriate for the USN middleware structure, with their application to the stream data in ocean environment. (2) Another proposal is a middleware structure based on USN environment adaptive to above mining techniques. This middleware structure includes sensor nodes, sensor network common interface, sensor data processor, sensor query processor, database, sensor data mining engine, user interface and so on.

  • PDF

From The Discovery Challenge on Thrombosis Data

  • Takabayashi, Katsuhiko;Tsumoto, Shusaku
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.361-363
    • /
    • 2001
  • Although data mining promises a new paradigm to discover medical knowledge form a database, there are many problems to be solved before real application is feasible. We had the chance to provide a data set to be analyzed as a discovery challenge by using various data mining techniques at the PKDD conference. As data providers, we evaluated and discussed results and clarified problems.

  • PDF

A Case Study of OLAP and Data Mining on the Analytical Knowledge Creation in Organizations (OLAP과 데이터마이닝을 이용한 조직내 분석지 생성에 관한 사례연구)

  • Cho, Jae-Hee
    • Knowledge Management Research
    • /
    • v.5 no.1
    • /
    • pp.69-82
    • /
    • 2004
  • Prior research on knowledge management focused more on the experiential knowledge based on individual's experience or knowhow than on the analytical knowledge extracted from corporate data. This study examines the effects of the data warehouse technology, especially OLAP(on line analytical processing) and data mining techniques, on the analytical knowledge creation in organizations, linking analytical knowledge creation to data analysis method through real world case studies.

  • PDF

A Study on the Analysis of Data Using Association Rule (연관규칙을 이용한 데이터 분석에 관한 연구)

  • 임영문;최영두
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.61
    • /
    • pp.115-126
    • /
    • 2000
  • In General, data mining is defined as the knowledge discovery or extracting hidden necessary information from large databases. Its technique can be applied into decision making, prediction, and information analysis through analyzing of relationship and pattern among data. One of the most important works is to find association rules in data mining. Association Rule is mainly being used in basket analysis. In addition, it has been used in the analysis of web-log and user-pattern. This paper provides the application method in the field of marketing through the analysis of data using association rule as a technique of data mining.

  • PDF