• Title/Summary/Keyword: Data-driven Research

Search Result 731, Processing Time 0.032 seconds

A Benchmarking Study for Deriving Data-driven Asset Management Strategy: U.S. Federal Transit Administration (FTA) Case (데이터 기반 노후 철도시설 자산관리 전략 도출을 위한 벤치마킹 연구)

  • Baek, Seungwon;Yoo, Minkyung;Yun, Sungmin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.591-599
    • /
    • 2021
  • Rail transit agencies in Korea have been struggling to set up a performance-based rail facility maintenance plan because there are no formal definition and decision criteria for aging infrastructure. This study investigates the definition of aging infrastructure through extensive literature review and identifies benchmarking criteria through comparison with rail transit facility management systems in Korea and United States. As results, an aging infrastructure should be defined considering both service age and performance level of a facility. The priority of repair/replacement should be also determined with reasonable criteria based on relationship between service age and performance level. To determine the definition and decision criteria, a practicable classification system for aging rail transit needs to be established in accordance with classification system for performance assessment. Furthermore, a comprehensive database needs to be built including useful life, performance level, and maintenance cost of each component of rail transit. It will allow establishing an efficient budget execution plan for aging infrastructure.

Priority for the Investment of Artificial Rainfall Fusion Technology (인공강우 융합기술 개발을 위한 R&D 투자 우선순위 도출)

  • Lim, Jong Yeon;Kim, KwangHoon;Won, DongKyu;Yeo, Woon-Dong
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.3
    • /
    • pp.261-274
    • /
    • 2019
  • This paper aims to develop an appropriate methodology for establishing an investment strategy for 'demonstration of artificial rainfall technology using UAV' and that include establishment of a technology classification, set of indicators for technology evaluation, suggestion of final key technology as a whole study area. It is designed to complement the latest research trend analysis results and expert committee opinions using quantitative analysis. The key indicators for technology evaluation consisted of three major items (activity, technology, marketability) and 10 detailed indicators. The AHP questionnaire was conducted to analyze the importance of indicators. As a result, it was analyzed that the attribute of the technology itself is most important, and the order of closeness to the implementation of the core function (centrality), feasibility (feasibility). Among the 16 technology groups, top investment priority groups were analyzed as ground seeding, artificial rainfall verification, spreading and diffusion of seeding material, artificial rainfall numerical modeling, and UAV sensor technology.

Analysis on Continuous Usage Intention of Chinese Mobile Games from the Perspective of Experiential Marketing and Network Externality

  • Lei, Bo;Lee, Jungmann
    • Journal of Information Technology Applications and Management
    • /
    • v.27 no.6
    • /
    • pp.197-224
    • /
    • 2020
  • Mobile games have become one of the most important driving forces of the game industry. We focus on the continuous intention to use Chinese mobile games from the perspective of experiential marketing and network externalities. We integrate user experience, network externalities and flow theory into expectation confirmation model and explore the influencing factors of continuous usage intention of Chinese mobile game and propose a research model. Game experience, service experience, perceived enjoyment, social interaction, challenge, perceived number of users and perceived number of peers were employed as independent variables, while flow, perceived value and satisfaction as mediating variables and continuous intention as the dependent variable. After surveying 426 samples, the model is tested with structural equation model. The results reveal that perceived enjoyment significantly positively influences perceived value, flow, satisfaction, and continuous intention. The greater the enjoyment of the game, the greater the satisfaction of the game and the greater the willingness to use it continuously. Game experience has a significant direct effect on continuous intention, which indicates that a better game experience can retain more users. Service experience and perceive number of peers positively influence satisfaction. Another finding is that social interaction and perceived number of users positively influence perceived value and flow, which indicate that social attributes are critical roles for retaining users. Game challenge also positively influences flow. The proper level of challenge is more likely to cause users to enter the state of flow. Flow indirectly influences continuous usage intention through the satisfaction of the game, which indicates that satisfaction is driven by flow experience and further retaining users. Empirical results implied that mobile game companies need to focus on improving user experience, expectation satisfaction and extending network externalities to improve the continuous intention of using mobile game.

A multi-layer approach to DN 50 electric valve fault diagnosis using shallow-deep intelligent models

  • Liu, Yong-kuo;Zhou, Wen;Ayodeji, Abiodun;Zhou, Xin-qiu;Peng, Min-jun;Chao, Nan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.148-163
    • /
    • 2021
  • Timely fault identification is important for safe and reliable operation of the electric valve system. Many research works have utilized different data-driven approach for fault diagnosis in complex systems. However, they do not consider specific characteristics of critical control components such as electric valves. This work presents an integrated shallow-deep fault diagnostic model, developed based on signals extracted from DN50 electric valve. First, the local optimal issue of particle swarm optimization algorithm is solved by optimizing the weight search capability, the particle speed, and position update strategy. Then, to develop a shallow diagnostic model, the modified particle swarm algorithm is combined with support vector machine to form a hybrid improved particle swarm-support vector machine (IPs-SVM). To decouple the influence of the background noise, the wavelet packet transform method is used to reconstruct the vibration signal. Thereafter, the IPs-SVM is used to classify phase imbalance and damaged valve faults, and the performance was evaluated against other models developed using the conventional SVM and particle swarm optimized SVM. Secondly, three different deep belief network (DBN) models are developed, using different acoustic signal structures: raw signal, wavelet transformed signal and time-series (sequential) signal. The models are developed to estimate internal leakage sizes in the electric valve. The predictive performance of the DBN and the evaluation results of the proposed IPs-SVM are also presented in this paper.

Digital Twin technology for Urban Policy Making (A Case Study of Policy Digital Twin of Sejong City) (디지털트윈 기술의 도시 정책 활용 사례 (세종시 도시행정 디지털트윈 프로젝트를 중심으로))

  • Jung, Y.J.;Cho, I.Y.;Lee, J.W.;Kim, B.H.;Lee, S.H.;Lim, C.G.;Lee, C.H.;Paik, E.H.;Jin, K.S.;Kim, Y.C.;Lee, S.M.;Choi, M.S.;KIM, T.H.;Chang, M.J.;Kim, S.O.;Kim, H.K.;Jung, S.J.;Lee, S.Y.;Ann, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.2
    • /
    • pp.43-55
    • /
    • 2021
  • National and social issues are becoming increasingly common, but traditional policy-making methods are no longer effective. Therefore, evidence-based policy making is emerging as an alternative paradigm. Digital twin technology is one of the digital support tools for the new data-driven policy-making process. This study presents ongoing government experiments in the world where digital twin technology is applied to policy making and describes our experience in developing digital twin platforms in Sejong-the de facto administrative capital of South Korea.

High-velocity ballistics of twisted bilayer graphene under stochastic disorder

  • Gupta, K.K.;Mukhopadhyay, T.;Roy, L.;Dey, S.
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.529-547
    • /
    • 2022
  • Graphene is one of the strongest, stiffest, and lightest nanoscale materials known to date, making it a potentially viable and attractive candidate for developing lightweight structural composites to prevent high-velocity ballistic impact, as commonly encountered in defense and space sectors. In-plane twist in bilayer graphene has recently revealed unprecedented electronic properties like superconductivity, which has now started attracting the attention for other multi-physical properties of such twisted structures. For example, the latest studies show that twisting can enhance the strength and stiffness of graphene by many folds, which in turn creates a strong rationale for their prospective exploitation in high-velocity impact. The present article investigates the ballistic performance of twisted bilayer graphene (tBLG) nanostructures. We have employed molecular dynamics (MD) simulations, augmented further by coupling gaussian process-based machine learning, for the nanoscale characterization of various tBLG structures with varying relative rotation angle (RRA). Spherical diamond impactors (with a diameter of 25Å) are enforced with high initial velocity (Vi) in the range of 1 km/s to 6.5 km/s to observe the ballistic performance of tBLG nanostructures. The specific penetration energy (Ep*) of the impacted nanostructures and residual velocity (Vr) of the impactor are considered as the quantities of interest, wherein the effect of stochastic system parameters is computationally captured based on an efficient Gaussian process regression (GPR) based Monte Carlo simulation approach. A data-driven sensitivity analysis is carried out to quantify the relative importance of different critical system parameters. As an integral part of this study, we have deterministically investigated the resonant behaviour of graphene nanostructures, wherein the high-velocity impact is used as the initial actuation mechanism. The comprehensive dynamic investigation of bilayer graphene under the ballistic impact, as presented in this paper including the effect of twisting and random disorder for their prospective exploitation, would lead to the development of improved impact-resistant lightweight materials.

A Review of Urban Flooding: Causes, Impacts, and Mitigation Strategies (도시 홍수: 원인, 영향 및 저감 전략 고찰)

  • Jin-Yong Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.489-502
    • /
    • 2023
  • Urban floods pose significant challenges to cities worldwide, driven by the interplay between urbanization and climate change. This review examines recent studies of urban floods to understand their causes, impacts, and potential mitigation strategies. Urbanization, with its increase in impermeable surfaces and altered drainage patterns, disrupts natural water flow, exacerbating surface runoff during intense rainfall events. The impacts of urban floods are far-reaching, affecting lives, infrastructure, the economy, and the environment. Loss of life, property damage, disruptions to critical services, and environmental consequences underscore the urgency of effective urban flood management. To mitigate urban floods, integrated flood management strategies are crucial. Sustainable urban planning, green infrastructure, and improved drainage systems play pivotal roles in reducing flood vulnerabilities. Early warning systems, emergency response planning, and community engagement are essential components of flood preparedness and resilience. Looking to the future, climate change projections indicate increased flood risks, necessitating resilience and adaptation measures. Advances in research, data collection, and modeling techniques will enable more accurate flood predictions, thus guiding decision-making. In conclusion, urban flooding demands urgent attention and comprehensive strategies to protect lives, infrastructure, and the economy.

A Study on the Behaviour Analysis and Construction Method of the Self-Supported Earth Retaining Wall (SSR) Using Landslide Stabilizing Piles (2열 H-파일을 이용한 자립식 흙막이 공법(SSR)의 거동분석 및 시공방법에 관한 연구)

  • Sim, Jae-Uk;Park, Keun-Bo;Son, Sung-Gon;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.41-54
    • /
    • 2009
  • The purpose of this research is to introduce the new temporary earth retaining wall system using landslide stabilizing piles. This system is a self-supported retaining wall (SSR) without installing supports such as tiebacks, struts and rakers. The SSR is a kind of gravity structures consisting of twin parallel lines of piles driven below excavation level, tied together at head of soldier piles and landslide stabilizing piles by beams. In order to investigate applicability and safety of this system, a series of experimental model tests were carried out and the obtained results are presented and discussed. Furthermore, the measured data from seven different sites on which the SSR was used for excavation were collected and analyzed to investigate the characteristic behavior lateral wall movements associated with urban excavations in Korea. It is observed that lateral wall movements obtained from the experimental model is in good agreement with the general trend observed by in site measurements.

Machine Learning Framework for Predicting Voids in the Mineral Aggregation in Asphalt Mixtures (아스팔트 혼합물의 골재 간극률 예측을 위한 기계학습 프레임워크)

  • Hyemin Park;Ilho Na;Hyunhwan Kim;Bongjun Ji
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.1
    • /
    • pp.17-25
    • /
    • 2024
  • The Voids in the Mineral Aggregate (VMA) within asphalt mixtures play a crucial role in defining the mixture's structural integrity, durability, and resistance to environmental factors. Accurate prediction and optimization of VMA are essential for enhancing the performance and longevity of asphalt pavements, particularly in varying climatic and environmental conditions. This study introduces a novel machine learning framework leveraging ensemble machine learning model for predicting VMA in asphalt mixtures. By analyzing a comprehensive set of variables, including aggregate size distribution, binder content, and compaction levels, our framework offers a more precise prediction of VMA than traditional single-model approaches. The use of advanced machine learning techniques not only surpasses the accuracy of conventional empirical methods but also significantly reduces the reliance on extensive laboratory testing. Our findings highlight the effectiveness of a data-driven approach in the field of asphalt mixture design, showcasing a path toward more efficient and sustainable pavement engineering practices. This research contributes to the advancement of predictive modeling in construction materials, offering valuable insights for the design and optimization of asphalt mixtures with optimal void characteristics.

Classification of Characteristics in Two-Wheeler Accidents Using Clustering Techniques (클러스터링 기법을 이용한 이륜차 사고의 특징 분류)

  • Heo, Won-Jin;Kang, Jin-ho;Lee, So-hyun
    • Knowledge Management Research
    • /
    • v.25 no.1
    • /
    • pp.217-233
    • /
    • 2024
  • The demand for two-wheelers has increased in recent years, driven by the growing delivery culture, which has also led to a rise in the number of two-wheelers. Although two-wheelers are economically efficient in congested traffic conditions, reckless driving and ambiguous traffic laws for two-wheelers have turned two-wheeler accidents into a significant social issue. Given the high fatality rate associated with two-wheelers, the severity and risk of two-wheeler accidents are considerable. It is, therefore, crucial to thoroughly understand the characteristics of two-wheeler accidents by analyzing their attributes. In this study, the characteristics of two-wheeled vehicle accidents were categorized using the K-prototypes algorithm, based on data from two-wheeled vehicle accidents. As a result, the accidents were divided into four clusters according to their characteristics. Each cluster showed distinct traits in terms of the roads where accidents occurred, the major laws violated, the types of accidents, and the times of accident occurrences. By tailoring enforcement methods and regulations to the specific characteristics of each type of accident, we can reduce the incidence of accidents involving two-wheelers in metropolitan areas, thereby enhancing road safety. Furthermore, by applying machine learning techniques to urban transportation and safety, this study adds to the body of related literature.