• Title/Summary/Keyword: Data sources

Search Result 3,991, Processing Time 0.034 seconds

$CO_2$ Transport for CCS Application in Republic of Korea (이산화탄소 포집 및 저장 실용화를 위한 대한민국에서의 이산화탄소 수송)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.18-29
    • /
    • 2010
  • Offshore subsurface storage of $CO_2$ is regarded as one of the most promising options to response severe climate change. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources, to transport to the storage sites and to store $CO_2$ into the offshore subsurface geological structure such as the depleted gas reservoir and deep sea saline aquifer. Since 2005, we have developed relevant technologies for marine geological storage of $CO_2$. Those technologies include possible storage site surveys and basic designs for $CO_2$ transport and storage processes. To design a reliable $CO_2$ marine geological storage system, we devised a hypothetical scenario and used a numerical simulation tool to study its detailed processes. The process of transport $CO_2$ from the onshore capture sites to the offshore storage sites can be simulated with a thermodynamic equation of state. Before going to main calculation of process design, we compared and analyzed the relevant equation of states. To evaluate the predictive accuracies of the examined equation of states, we compare the results of numerical calculations with experimental reference data. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the captured $CO_2$ mixture contains many impurities such as $N_2$, $O_2$, Ar, $H_{2}O$, $SO_{\chi}$, $H_{2}S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification and transport processes. This paper analyzes the major design parameters that are useful for constructing onshore and offshore $CO_2$ transport systems. On the basis of a parametric study of the hypothetical scenario, we suggest relevant variation ranges for the design parameters, particularly the flow rate, diameter, temperature, and pressure.

Screening of Biologically Active Compound from Edible Plant Sources-IX. Isolation and Identification of Sesquiterpene Lactons Isolated from the Root of Ixeris dentata forma albiflora; Inhibition Effects on ACAT, DGAT and FPTase Activity (식용식물자원으로부터 활성물질의 탐색-IX. 흰씀바귀(Ixeris dentata forma albiflora)뿌리에서 Sesquiterpene Lactone 화합물의 분리 및 구조 동정; ACAT, DGAT 및 FPTase 효소 활성의 저해)

  • Bang, Myun-Ho;Jang, Tae-O;Song, Myoung-Chong;Kim, Dong-Hyun;Kwon, Byoung-Mog;Kim, Young-Kuk;Lee, Hyun-Sun;Chung, In-Sik;Kim, Dae-Keun;Kim, Sung-Hoon;Park, Mi-Hyun;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.47 no.2
    • /
    • pp.251-257
    • /
    • 2004
  • The root of lxeris dentata forma albiflora was extracted with 80% aqueous MeOH and solvent fractionated with EtOAc, n-BuOH and water, successively. From the EtOAc and n-BuOH fractions, four sesquiterpene compounds were isolated through the repeated silica gel and ODS column chromatographies. The chemical structures were determined as zaluzanin C (1), $9{\alpha}-hydroxyguaian-4(l5),10(14),11(13)-triene-6,12-olide$ (2), $3{\beta}-O-{\beta}-D-glucopyranosyl-8{\alpha}-hydroxyguaian-4(15),10(14 )-diene-6,12-olide$ (3), and $3{\beta}-O-{\beta}- D-glucopyranosyl-8{\beta}hydroxyguaian-10(14)-ene-6,12-olide$ (4) through the interpretation of several spectral data including 2D-NMR. Some showed the inhibitory effects on DGAT (Diacylglycerol acyltransferase), ($IC_{50}$ values of 1, 2: 0.13, 0.10 mM), the catalyzing enzymes of the intracellular esterification of diacylglycerol and FPTase (Famesyl-protein transferase), ($IC_{50}$ values of 1, 2: 0.15, 0.18 mM), the farnesylation enzyme for Ras protein charge of cancer promotion.

Food Habits of the Glass eel Anguilla japonica in the West Coast Estuaries of Korean Peninsula Determined by Using C and N Stable Isotopes (안정동위원소를 이용한 서해연안 실뱀장어의 먹이 습성)

  • Kim, Jeong Bae;Lee, Won-Chan;Kim, Dae-Jung;Seong, Ki Baik;Choi, Hee-Gu;Choi, Woo-Jeung;Hwang, Hak Bin;Hong, Sokjin;Kim, Hyung Chul;Park, Sung-Eun;Shim, Jeong Hee;Kang, Chang-Keun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.4
    • /
    • pp.206-213
    • /
    • 2013
  • Glass eels (Anguilla japonica) are caught in the west coast of Korea on their migratory route from the breeding grounds in the Mariana Trench along the North Equatorial Current and the Kuroshio Current. To identify the food source of natural glass eels, we analyzed the stable C and N isotopes of glass eels caught in April 2012 and investigated possible food sources in the survey area. In particular, with respect to the stable C and N isotopes of particulate organic matter, we extended the surveying area to the northern parts of East China Sea as well as the west coast of Korea. The stable C and N isotope ratios of the glass eels caught in the west coast were found to be $-20.7{\pm}0.1$‰ and $5.0{\pm}0.2$‰, respectively. The stable C and N isotope ratios of the particulate organic matter in the west coast of Korea, in which the glass eels are assumed to eat the particulate organic matter as food source, were estimated to be $-24.0{\pm}0.3$‰ and $2.8{\pm}0.4$‰, respectively. Similar data were obtained from the northern part of the East China Sea, $-24.5{\pm}0.5$‰ and $0.8{\pm}0.3$‰. The stable isotope ratios showed values differing from the stepwise increasing rates up the food web in natural aquatic ecosystem, showing that particulate organic matter in the west coast of Korea and East China Sea was not served as the glass eels food source. This result suggested that the glass eels caught in the west coast might not assimilate nutrition from the marine environment during long migration.

Modified Traditional Calibration Method of CRNP for Improving Soil Moisture Estimation (산악지형에서의 CRNP를 이용한 토양 수분 측정 개선을 위한 새로운 중성자 강도 교정 방법 검증 및 평가)

  • Cho, Seongkeun;Nguyen, Hoang Hai;Jeong, Jaehwan;Oh, Seungcheol;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.665-679
    • /
    • 2019
  • Mesoscale soil moisture measurement from the promising Cosmic-Ray Neutron Probe (CRNP) is expected to bridge the gap between large scale microwave remote sensing and point-based in-situ soil moisture observations. Traditional calibration based on $N_0$ method is used to convert neutron intensity measured at the CRNP to field scale soil moisture. However, the static calibration parameter $N_0$ used in traditional technique is insufficient to quantify long term soil moisture variation and easily influenced by different time-variant factors, contributing to the high uncertainties in CRNP soil moisture product. Consequently, in this study, we proposed a modified traditional calibration method, so-called Dynamic-$N_0$ method, which take into account the temporal variation of $N_0$ to improve the CRNP based soil moisture estimation. In particular, a nonlinear regression method has been developed to directly estimate the time series of $N_0$ data from the corrected neutron intensity. The $N_0$ time series were then reapplied to generate the soil moisture. We evaluated the performance of Dynamic-$N_0$ method for soil moisture estimation compared with the traditional one by using a weighted in-situ soil moisture product. The results indicated that Dynamic-$N_0$ method outperformed the traditional calibration technique, where correlation coefficient increased from 0.70 to 0.72 and RMSE and bias reduced from 0.036 to 0.026 and -0.006 to $-0.001m^3m^{-3}$. Superior performance of the Dynamic-$N_0$ calibration method revealed that the temporal variability of $N_0$ was caused by hydrogen pools surrounding the CRNP. Although several uncertainty sources contributed to the variation of $N_0$ were not fully identified, this proposed calibration method gave a new insight to improve field scale soil moisture estimation from the CRNP.

Effect of amendments and their causes of rice yield increase in ill drained paddy soil (습답(濕沓)에 대(對)한 개량제(改良劑)의 효과(效果)와 유효개량제(有效改良劑)의 수도증수원인(水稻增收原因)에 관(關)한 연구(硏究))

  • Park, Chon Suh;Song, Jae Ha;Kim, Yung Sup;Lee, Chung Young;Choh, Young Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.1
    • /
    • pp.13-19
    • /
    • 1971
  • In order to establish the method of improving ill drained paddy soil where the accumulation of absorption inhibitor is worried in the earlier stages of rice growth, proper soil is selected and an field experiment is designed having treatments such as lime materials, none sulfate fertilizers, boron and straw etc. The data of yield and plant analysis in different stages of rice growth is eveluated and discussed to obtain following summaries. (1) Significant yield increase was made by the treatment of lime materials such as slacked lime or wollastonite powder, materials inhibiting the activity of microorganisms such as boron and of none sulfate fertilizers lacking inhibitor producing sources. (2) The crop scientifice causes of decreasing yield are the decreasing the number of panicles per hill, grains per panicle and the weight of grains. (3) The plant nutritional causes of decreasing yield are the lowering of nitrogen content throughout the life, phosphate content since young premodia formation stage of plant and the decreased content of magnesium, calcium and silicate in straw at harvesting stage. (4) The causes of lowering the content of various elements in rice plant grown in ill drained paddy soil are suggested as root damage by producing and accumulating absorption inhibitors such as organic acids and hydrogen sulfide etc, from the following observed facts; (a) In young premodia formation stage, attaining to the maximum production and accumulation of absorption inhibitor, the phosphate accumulation in plant was smaller in the phosphate plots than without phosphate plots and much higher in the neutralized plots by adding lime materials. (b) In the plots of straw addition, the potassium content in plant at the young premodia formation stage is very low probabley due to root damage by absorption inhibitor produced from the process of straw decomposition but higher at the stage of harvesting probably due to the immetabolic negative absorption of damaged roots. (c) The effect of boron, known as the inhibitor of microorganism activity to decompose organic matter, is apparent. (d) The effect of nonsulfate fertilizer treatment, having no source of producing inhibitor such as hydrogen sulfide, was significant. (e) All the yield components, decided around the young premodia formation stage attaining to the maximum inhibitor concentration in soil and minimum root activity, are significantly decreased.

  • PDF

Key Methodologies to Effective Site-specific Accessment in Contaminated Soils : A Review (오염토양의 효과적 현장조사에 대한 주요 방법론의 검토)

  • Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.383-397
    • /
    • 1999
  • For sites to be investigated, the results of such an investigation can be used in determining foals for cleanup, quantifying risks, determining acceptable and unacceptable risk, and developing cleanup plans t hat do not cause unnecessary delays in the redevelopment and reuse of the property. To do this, it is essential that an appropriately detailed study of the site be performed to identify the cause, nature, and extent of contamination and the possible threats to the environment or to any people living or working nearby through the analysis of samples of soil and soil gas, groundwater, surface water, and sediment. The migration pathways of contaminants also are examined during this phase. Key aspects of cost-effective site assessment to help standardize and accelerate the evaluation of contaminated soils at sites are to provide a simple step-by-step methodology for environmental science/engineering professionals to calculate risk-based, site-specific soil levels for contaminants in soil. Its use may significantly reduce the time it takes to complete soil investigations and cleanup actions at some sites, as well as improve the consistency of these actions across the nation. To achieve the effective site assessment, it requires the criteria for choosing the type of standard and setting the magnitude of the standard come from different sources, depending on many factors including the nature of the contamination. A general scheme for site-specific assessment consists of sequential Phase I, II, and III, which is defined by workplan and soil screening levels. Phase I are conducted to identify and confirm a site's recognized environmental conditions resulting from past actions. If a Phase 1 identifies potential hazardous substances, a Phase II is usually conducted to confirm the absence, or presence and extent, of contamination. Phase II involve the collection and analysis of samples. And Phase III is to remediate the contaminated soils determined by Phase I and Phase II. However, important factors in determining whether a assessment standard is site-specific and suitable are (1) the spatial extent of the sampling and the size of the sample area; (2) the number of samples taken: (3) the strategy of taking samples: and (4) the way the data are analyzed. Although selected methods are recommended, application of quantitative methods is directed by users having prior training or experience for the dynamic site investigation process.

  • PDF

An Analysis on the Knowledge Levels, Attitudes, and Factors Affecting the Choices of Those Who Completed the Education of Persons Conducting Clinical Trial Workers (의약품 임상시험 종사자 교육 이수자의 지식 수준, 태도, 교육 선택 요인 분석)

  • Lee, Yoon Jin;Jang, Hye Yun;Lee, Yu-Mi
    • The Journal of KAIRB
    • /
    • v.3 no.2
    • /
    • pp.19-27
    • /
    • 2021
  • Purpose: This study aimed to analyze the knowledge levels, attitudes, and factors affecting the choices on the education of the participants who completed their education of persons conducting clinical trial workers, and to assess the problems of the current education system for clinical trial workers, leading to improvements. Methods: Clinical trial workers (including principal investigators/subinvestigators, members of the Institutional Review Board [IRB], clinical research coordinators) who were affiliated to one of the 4 university hospitals running their own clinical trial center and IRB in Daegu and completed their education of persons conducting clinical trial workers were the subjects of this study. One hundred seven online questionnaires were answered from 2021-04-02 to 2021-04-17. Descriptive statistics and Pearson correlation analysis were used to analyze the acquired data. Independent t-test and 1-way analysis of variance were used to analyze the differences in the knowledge levels and attitudes following the characteristics of the education participants. Results: The baseline characteristics of the 107 participants were as follows: the majority of the participants were female (72.0%), were in their 30s (36.4%), had a nursing major (29.0%), were clinical research coordinators (63.6%), had never experienced a principal investigator (79.4%), had participated 3 or more educations (58.9%), had completed their maintenance course (55.1%), had 5 or more years of clinical trial experiences (34.6%). The fields on which participants had low levels of objective knowledge were "types and preparations on audits of clinical trials," "regulations on clinical trials (Pharmaceutical Affairs Act, Korea Good Clinical Practice)." The difficulties that the participants faced were on "annual educations" and "lack of information regarding the educations." Factors that showed significant differences in objective knowledge were sex (p=0.02), number of educations (p=0.004), the curriculum of 2020 (p=0.001). Age (p=0.004), having experienced a principal investigator (p=0.006), number of educations (p<0.001), the curriculum of 2020 (p<0.001), clinical trial career (p=0.001) were factors that significantly affected subjective knowledge. Attitudes toward the education were positively correlated with objective knowledge (r=0.20, p=0.04) and subjective knowledge (r=0.32, p=0.001). Major sources through which information on educations was acquired were "institutional notices," and major factors affecting the choices on the education were "when the education took place" and "where the education took place." "Within the affiliated institution," "Online classes (recorded)" and "IRB and review processes" were each the most preferred place, mode, and content of the education. Conclusion: Knowledge levels varied largely among participants who completed their education of persons conducting clinical trial workers, depending on their characteristics such as the number of educations. Participants also complained about their lack of information on educations. The quality of education may be improved if clinical trial organizations are designated as education facilities. Education programs must be developed considering the knowledge level and demand of the participants. Furthermore, as offline classes may be impossible due to pandemics such as the coronavirus disease 2019, the development of diverse and sophisticated online classes is looked forward to.

  • PDF

Plant Growth and Ascorbic Acid Content of Spinacia oleracea Grown under Different Light-emitting Diodes and Ultraviolet Radiation Light of Plant Factory System (식물공장시스템의 발광다이오드와 UVA 광원 하에서 자란 시금치 생육 및 아스코르브산 함량)

  • Park, Sangmin;Cho, Eunkyung;An, Jinhee;Yoon, Beomhee;Choi, Kiyoung;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • The study aimed to determine effects of light emitting diode (LED) and the ultraviolet radiation (UVA) light of plant factory on plant growth and ascorbic acid content of spinach (Spinacia oleracea cv. Shusiro). Plants were grown in a NFT (Nutrient Film Technique) system for 28 days after transplanting with fluorescent light (FL, control), LEDs and UVA (Blue+UVA (BUV), Red and Blue (R:B(2:1)) + UVA (RBUV), Red+UVA (RUV), White LED (W), Red and Blue (R:B(2:1)), Blue (B), Red (R)) under the same light intensity ($130{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and photoperiod (16/8h = day/night). All the light sources containing the R (R, RB, RUV, and RBUV) showed leaf epinasty symptom at 21 days after transplanting (DAT). Under the RUV treatment, the lengths of leaf and leaf petiole were significantly reduced and the leaf width was increased, lowering the leaf shape index, compared to the R treatment. Under the BUV, however, the lengths of leaf and leaf petiole were increased significantly, and the leaf number was increased compared to B. Under the RBUV treatment, the leaf length was significantly shorter than other treatments, while no significant difference between the RBUV and RB for the fresh and dry weights and leaf area. Dry weights at 28 days after transplanting were significantly higher in the R, RUV and BUV treatments than those in the W and FL. The leaf area was significantly higher under the BUV treatment. The ascorbic acid content of the 28 day-old spinach under the B was significantly higher, followed by the BUV, and significantly lower in FL and R. All the integrated data suggest that the BUV light seems to be the most suitable for growth and quality of hydroponically grown spinach in a plant factory.

A Critical Review about Application of IUCN Red List Criteria at Regional Level to Korean Endangered Vascular Plants Assessed by the Ministry of Environment, Republic of Korea (환경부 멸종위기 관속식물 지정 기준으로 사용된 IUCN 지역 적색목록 평가 분석)

  • Chang, Chin-Sung;Kwon, Shin-Young;Son, Sungwon;Kim, Hui
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.4
    • /
    • pp.361-377
    • /
    • 2018
  • The aim of this study was to examine whether the guideline by the Ministry of Environment (ME) successfully and appropriately applied the IUCN Red List criteria at regional level and the rare and endangered national list considered eligible. A certain number of vascular plants, which are widely distributed in the world or in east Asia, deemed to be ineligible for assessment at a regional level as Not Applicable category (NA), because it occurs at very low numbers in South Korea. Among 377 vascular plant taxa evaluated by the ME, NA included 238 species, which represented 63.1%. The number of synonymized species or illegitimate name species were 13 species, which accounted for 3.4%. 21 species (9.3%) were threatened at global level and 103 species were possibly candidates species list for Red List assessments at regional level in the near future. The proportion of NA or waiting list was 66.6% among the list assessed by the ME. The most common errors involved incorrectly application of species extinction in case of population extinction in South Korea to the assessment and provided incorrect interpretation of the Red List criteria at regional level. The most assessments proposed by ME were not backed up without quantitative data quality, justifications, and sources. It is suggested that the risk of extinction should be reassessed at least in the Korean peninsula within the light of their overall distribution including far eastern Russia and North eastern China in north and for Japan and Taiwan in south for regional assessment. The results obtained here using the IUCN criteria at regional level showed that the list proposed by the ME produced an overestimation of the number of threatened vascular plants. Also, the misapplication of the term 'species extinction' for regional assessment was open to some degree of subjectivity and misinterpretation.

Effects of Environmental Factors on Phytoplankton Succession and Community Structure in Lake Chuncheon, South Korea (환경요인이 춘천호의 식물플랑크톤 천이 및 군집구조에 미치는 영향)

  • Baek, Jun-Soo;Youn, Seok-Jea;Kim, Hun-Nyun;Sim, Youn-Bo;Yoo, Soon-Ju;Im, Jong-Kwon
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.2
    • /
    • pp.71-80
    • /
    • 2019
  • Effects of environmental factors on phytoplankton succession and community structure were studied in Lake Chuncheon located in Bukhan River, South Korea. The data were sampled at three sites such as CC1 (lower side), CC2 (middle side), and CC3 (upper side of Lake Chuncheon) from 2014 to 2017. The annual average precipitation in Lake Chuncheon was 992 mm during the study period (2014~2017), and the annual precipitation was lower than 800 mm in 2014 and 2015. The annual average water temperature, total phosphorus (TP), and total nitrogen (TN) ranged from 17.0 to $21.1^{\circ}C$, 0.012 to $0.019mg\;L^{-1}$, and 1.272 to $1.922mg\;L^{-1}$, respectively. The TN concentration was relatively high in 2015 compared with the other study years, as a drought continued from 2014 to 2015. When comparing the correlation between precipitation and environmental factors, water temperature (p<0.01) and TP(p<0.05) showed positive correlations with rainfall. The average numbers of phytoplankton cells by branch were 2,094, 2,182, and $3,108cells\;mL^{-1}$ in CC1, CC2, and CC3, respectively. CC3 is considered advantageous for phytoplankton growth, even in small pollution sources due to low water depth. As a result of analyzing the relationship between precipitation and phytoplankton, the correlation between the two was shown to be high for 2016 (p<0.01) and 2017 (p<0.05), which is when precipitation was high. However, the correlation was not clear to 2014 and 2015. The relationship between water temperature and phytoplankton indicated a negative correlation with diatoms (p<0.01), yet positive correlations with green algae (p<0.01) and cyanobacteria (p<0.01). Diatoms increased in spring and autumn, which are characterized by low water temperature, and green algae and cyanobacteria increased in summer, when the water temperature is high. Our findings provide a scientific basis for characteristics of phytoplankton and water quality and management at the Lake Chuncheon.