• Title/Summary/Keyword: Data skew

Search Result 126, Processing Time 0.025 seconds

Geometric Modeling of Linear Pushbroom Images : SPOT5 Images

  • Koo, Ja-Hyuck;Jung, Hyung-Sup;Lee, Ho-Nam
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1165-1167
    • /
    • 2003
  • Geometric corrections are required to compensate skew effects, earth rotation effects and so on. Parameters for geometric modeling can be acquired from the metadata information. These parameters allow to locate on ground every pixel of acquired images. In this paper, we tested the precision of geometric modeling of linear pushbroom images, acquired by SPOT 3 and 5 using the satellite orbit information itself without additional external data. The result acquired from examination to recovery the geometry of image using 30 GCPs have about 650m RMSE in SPOT 3 and about 170m RMSE in SPOT 5.

  • PDF

Selectivity Estimation for Spatial Databases

  • Chi, Jeong-Hee;Lee, Jin-Yul;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.766-768
    • /
    • 2003
  • Selectivity estimation for spatial query is curial in Spatial Database Management Systems(SDBMS). Many works have been performed to estimate accurate selectivity. Although they deal with some problems such as false-count, multi-count arising from properties of spatial dataset, they can not get such effects in little memory space.* Therefore, we need to compress spatial dataset into little memory. In this paper, we propose a new technique called MW Histogram which is able to compress summary data and get reasonable results. Our method is based on two techniques:(a)MinSkew partitioning algorithm which deal with skewed spatial datasets. efficiently (b) Wavelet transformation which compression effect is proven. We evaluate our method via real datasets. The experimental result shows that the MW Histogram has the ability of providing estimates with low relative error and retaining the similar estimates even if memory space is small.

  • PDF

Skew-Aware Partitioning of Multi-Dimensional Array Data (다차원 배열 데이터에 대한 편향 인지 분할 기법)

  • Kim, MyeongJin;Oh, SoHyeon;Shin, YoonJae;Choe, YeonJeong;Lee, Ki Yong
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1223-1225
    • /
    • 2015
  • 본 논문에서는 여러 과학분야에서 사용되는 대용량 배열 데이터를 병렬처리를 위해 효율적으로 분할하는 기법을 제안한다. 실제 배열 데이터는 희소(sparse) 배열로 구성된 경우가 많아 기존의 chunking 기법을 사용하면 일부 chunk에게만 데이터가 밀집되는 편향 현상이 발생하게 된다. 이러한 문제를 극복하기 위해 본 논문에서는 k-d tree와 유사한 방법으로 공간을 분할하고, 분할된 공간을 chunk로 두는 방법을 제안한다. 제안 방법에 의해 각 chunk는 데이터의 밀집 정도가 비슷하게 되어 효과적인 부하분산(load balancing)이 이루어질 수 있다.

Application of Multiple Regression Method to Prediction of Noise Level in Ship Cabins (회귀분석법에 의한 선박 소음 예측에 관한 연구)

  • Dong-Hae Kim;Kyoon-Yang Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.112-118
    • /
    • 1994
  • In this paper, statistical approach to prediction of A-weighted noise level in ship cabins. based on multiple linear regression analysis, is conducted. The best regression formula is composed of seven parameters of the deadweight, the type of ship, the location of engines and cabins, the type of deckhouse and the propeller skew angle. Verification work was carried out with other 210 cabins' data in 6 ships. As a result, the formula ensures the accuracy of 3 dB(A) in 77 % of cases.

  • PDF

Comparison of Traditional Workloads and Deep Learning Workloads in Memory Read and Write Operations

  • Jeongha Lee;Hyokyung Bahn
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.164-170
    • /
    • 2023
  • With the recent advances in AI (artificial intelligence) and HPC (high-performance computing) technologies, deep learning is proliferated in various domains of the 4th industrial revolution. As the workload volume of deep learning increasingly grows, analyzing the memory reference characteristics becomes important. In this article, we analyze the memory reference traces of deep learning workloads in comparison with traditional workloads specially focusing on read and write operations. Based on our analysis, we observe some unique characteristics of deep learning memory references that are quite different from traditional workloads. First, when comparing instruction and data references, instruction reference accounts for a little portion in deep learning workloads. Second, when comparing read and write, write reference accounts for a majority of memory references, which is also different from traditional workloads. Third, although write references are dominant, it exhibits low reference skewness compared to traditional workloads. Specifically, the skew factor of write references is small compared to traditional workloads. We expect that the analysis performed in this article will be helpful in efficiently designing memory management systems for deep learning workloads.

The Development of Automatic Tool Change System for Polishing Robot and Windows-Environment Integration Program for Application (연마 로붓용 자동공구교환장치와 Windows환경에서의 통합용 프로그램 개발)

  • Park, Sang-Min;An, Jong-Seok;Song, Moon-Sang;Kim, Jae-Hee;Yoo, Bum-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.147-154
    • /
    • 2003
  • An effective die-polishing robot system is developed. ATC (Automatic Tool Change), tool posture angle control, and robot program for polishing application are developed and integrated into a robotic system that consists of a robot, pneumatic grinding tool, and grinding abrasives (papers and special films). ATC is specifically designed to exchange whole grinding tool set for complete unmanned operation. A tool posture angle control system is developed for the tools to maintain a specified skew angle rather than right angle on the surface for best finishing results. A PC and the robot controller control ATC and tool posture angle. Also, there have been more considerations on enhancing the performance of the system. Elastic material is inserted between the grinding pad and the holder for better grinding contact. Robot path data are generated automatically from the NC data of previous machining process.

Automatic Landing System using a Trajectory of Laser Beam (레이저 빔 궤적을 이용한 자동 랜딩 시스템)

  • Hwang, Jin-Ah;Nam, Gi-Gun;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • This paper proposes a method of container position measurement using automatic landing system that is estimated by a laser range finder. In the most of container position measurement methods, CCD cameras or laser scanners have been used to get the source data. However those sensors are not only weak for disturbances, for examples, the light, fog, and rain, but also the system cost is high. When the spreader arrives at the goal position, it is still swung by inertia or by wind effect. In this paper, the spreader swung data have been used to find the container position. The laser range finder is equipped in the front side of spreader. It can measure distance and relative position between spreader and container. This laser range finder can be rotated as desired by a motor. And a tilt sensor is equipped on the spreader to measure spreader sway. The relative position information between the spreader and a container using the laser range finder and tilt sensor is estimated through the geometrical analysis.

Inflow Prediction and First Principles Modeling of a Coaxial Rotor Unmanned Aerial Vehicle in Forward Flight

  • Harun-Or-Rashid, Mohammad;Song, Jun-Beom;Byun, Young-Seop;Kang, Beom-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.614-623
    • /
    • 2015
  • When the speed of a coaxial rotor helicopter in forward flight increases, the wake skew angle of the rotor increases and consequently the position of the vena contracta of the upper rotor with respect to the lower rotor changes. Considering ambient air and the effect of the upper rotor, this study proposes a nonuniform inflow model for the lower rotor of a coaxial rotor helicopter in forward flight. The total required power of the coaxial rotor system was compared against Dingeldein's experimental data, and the results of the proposed model were well matched. A plant model was also developed from first principles for flight simulation, unknown parameter estimation and control analysis. The coaxial rotor helicopter used for this study was manufactured for surveillance and reconnaissance and does not have any stabilizer bar. Therefore, a feedback controller was included during flight test and parameter estimation to overcome unstable situations. Predicted responses of parameter estimation and validation show good agreement with experimental data. Therefore, the methodology described in this paper can be used to develop numerical plant model, study non-uniform inflow model, conduct performance analysis and parameter estimation of coaxial rotor as well as other rotorcrafts in forward flight.

Flow-density Relations Satisfying Stationary Conditions using Statistical Analysis (통계적 분석에 의한 정상상태조건을 만족하는 교통량-밀도 관계 도출)

  • Kim, Yeong-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.5 s.91
    • /
    • pp.135-142
    • /
    • 2006
  • The flow-density relations represent equilibrium relations between flow and density in the stationary state. Using individual vehicle data this paper proposed a method to 131ter traffic data in the stationary state and showed flow-density relations produced by the traffic data in the stationary state. The Proposed method is based on the idea that free flow and congested flow show totally different traffic behaviors and time series of the traffic data observed at detection stations. The traffic data collected from the stationary state in the free flow using this filtering method consist in the left branch of the flow-density relation and the traffic data collected from the stationary state in the congested flow consist in the right branch of the flow-density relation. The traffic data in the stationary state skew reproducible flow-density relation in the almost whole range of the traffic flow.

Skewed Data Handling Technique Using an Enhanced Spatial Hash Join Algorithm (개선된 공간 해쉬 조인 알고리즘을 이용한 편중 데이터 처리 기법)

  • Shim Young-Bok;Lee Jong-Yun
    • The KIPS Transactions:PartD
    • /
    • v.12D no.2 s.98
    • /
    • pp.179-188
    • /
    • 2005
  • Much research for spatial join has been extensively studied over the last decade. In this paper, we focus on the filtering step of candidate objects for spatial join operations on the input tables that none of the inputs is indexed. In this case, many algorithms has presented and showed excellent performance over most spatial data. However, if data sets of input table for the spatial join ale skewed, the join performance is dramatically degraded. Also, little research on solving the problem in the presence of skewed data has been attempted. Therefore, we propose a spatial hash strip join (SHSJ) algorithm that combines properties of the existing spatial hash join (SHJ) algorithm based on spatial partition for input data set's distribution and SSSJ algorithm. Finally, in order to show SHSJ the outperform in uniform/skew cases, we experiment SHSJ using the Tiger/line data sets and compare it with the SHJ algorithm.