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Abstract  

With the recent advances in AI (artificial intelligence) and HPC (high-performance computing) technologies, 

deep learning is proliferated in various domains of the 4th industrial revolution. As the workload volume of 

deep learning increasingly grows, analyzing the memory reference characteristics becomes important. In this 

article, we analyze the memory reference traces of deep learning workloads in comparison with traditional 

workloads specially focusing on read and write operations. Based on our analysis, we observe some unique 

characteristics of deep learning memory references that are quite different from traditional workloads. First, 

when comparing instruction and data references, instruction reference accounts for a little portion in deep 

learning workloads. Second, when comparing read and write, write reference accounts for a majority of 

memory references, which is also different from traditional workloads. Third, although write references are 

dominant, it exhibits low reference skewness compared to traditional workloads. Specifically, the skew factor 

of write references is small compared to traditional workloads. We expect that the analysis performed in this 

article will be helpful in efficiently designing memory management systems for deep learning workloads. 
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1. Introduction 

 As artificial intelligence (AI) technology advances dramatically, deep learning is increasingly being 

adopted in modern intelligent systems. Accordingly, deep learning has become an indispensable part of our 

daily lives [1, 2, 3]. Various kinds of living services internally perform image processing and/or text analysis 

with deep learning frameworks such as TensorFlow [4, 5]. Mobile services also utilize deep learning 

techniques for smart services [6].  

As the data size of deep learning grows, analyzing the memory reference characteristics of deep learning 

workloads becomes important. Although the memory size of the system continues to extend, it is not easy to 
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accommodate the entire memory footprint of ever growing deep learning dataset due to the scalability limit of 

DRAM medium and its power consumption [7, 8]. Specifically, the manufacturing of DRAM cannot scale 

down the density below 5 nanometers, and the power consumption of DRAM increases largely in accordance 

with the memory capacity used. As DRAM is volatile memory, consistent refresh of each cell is necessary for 

maintaining data even when the data is not accessed [7, 8]. Note that this refresh operation is responsible for a 

large portion of power consumption in memory systems [9]. 

For this reason, analyzing memory references is important to design an efficient memory management 

system for deep learning workloads. In this article, we analyze the memory reference characteristics of deep 

learning workloads in comparison with traditional workloads. In particular, we characterize read and write 

operations separately and observe some important characteristics of deep learning memory references, which 

are very different from traditional workloads.  

First, when comparing instruction and data references, instruction references account for a little portion in 

deep learning workloads, which is quite different from traditional workloads. Specifically, instruction 

reference accounts for 1-3.3% in deep learning workloads while 15.3-37.5% in traditional workloads. Second, 

when comparing read and write references, write reference accounts for dominant portion of 63.7-80.4%, 

which is also different from traditional workloads. Third, although write reference accounts for a majority of 

memory references, it exhibits low reference skewness compared to traditional workloads. Specifically, the 

skew factor of write references is very small compared to traditional workloads. 

Based on the analysis conducted in this article, we can summarize the result such that efficient memory 

management for deep learning workloads is more difficult than traditional workloads because of specific 

memory reference characteristics. We hope that the result of this article will be helpful in managing future 

memory management systems for deep learning workloads by considering the characteristics we analyzed. 

 

2. Ratio of Instruction and Data Read/Write 

Pytorch and TensorFlow are popular deep learning frameworks for creating learning models with LSTM 

and Convolution layers. In this article, we collect memory reference traces while running TensorFlow with 

LSTM and Convolution layers. For extracting memory reference traces while running deep learning workloads, 

we utilize the Callgrind module of Valgrind tool set [10]. We collect memory reference traces of four deep 

learning workloads: IMDB, Spam detection, Fashion MNIST, and MNIST. IMDB classifies positive or 

negative ratings from 50,000 movie reviews by making use of 1D Convolution layers. Spam detection decides 

whether an email is spam or not according to the contents of the email by making use of LSTM layers. 

FashionMNIST classifies 10 types of clothing images including bags, shoes, and pants by making use of 2D 

Convolution layers. MNIST identifies text images of numbers 0 to 9 by making use of LSTM layers. For 

comparison purpose, we make use of memory reference traces of traditional workloads consisting of game, 

office, PDF, and photo. Game is a traditional card game app called Freecell. Office is a document editing 

software called Gedit. PDF is a document viewer application called KGhostview. Photo is an image browser 

software called Geeqie. 

Figs. 1 and 2 show the distributions of memory references for the deep learning workloads and traditional 

workloads, respectively. Memory references can be classified into read instruction, read data, and write data. 

As shown in Fig. 1, in deep learning workloads, read instruction accounts for a very small portion of memory 

references. Specifically, read instruction is responsible for 1.0-3.3%. Note that this is not the case for traditional 

workloads in Fig. 2 where 15.3-37.5% are read instruction. This implies that the size of data to be referenced 
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in deep learning workloads is larger than traditional workloads for running the same number of instructions.  

Also, write data accounts for a large portion of memory references in deep learning workloads. Specifically, 

write data is responsible for 63.7-80.4% of total memory references irrespective of dataset and workload types 

as shown in Fig. 1. In traditional workloads, however, read data accounts for a majority of memory references 

in most cases though write data is dominant in some workload cases such as photo, where write data accounts 

for 56.6% of memory references. In game, office, and PDF, read data accounts for 64.5%, 54.9%, and 68.7%, 

respectively.  

    

Figure 1. Ratio of memory references in deep learning workloads. 

       

Figure 2. Ratio of memory references in traditional workloads. 

 

3. Memory Reference Trends  

Figs. 3 and 4 show the memory reference trend for deep learning and traditional workloads, respectively, 

based on memory addresses. In the figure, blue and red curves represent read and write operations, respectively. 

The memory address discussed here is not a physical memory address, but a logical address generated for each 

workload. As shown in the figure, though there are differences in reference frequency for each workload, a 

significant number of memory references are concentrated in specific address areas in both deep learning and 

traditional workloads. The reason that the difference in memory reference addresses by workload is not large 

is because when each process is created, the memory address areas are formed into code, data, stack, heap, and 

library areas, and memory references are made based on these areas.  

 To further examine memory reference trends, Figs. 5 and 6 show memory references only for accessed 

memory blocks rather than all memory regions for deep learning and traditional workloads, respectively. For 

this purpose, each memory block is assigned a unique number. As shown in the figure, we can see in deep 

learning workloads that read and write operations occur symmetrically to some extent. That is, in regions 

where reading occurs a lot, writing also appears a lot. This is because the steps of training by reading data and 

writing the result after that training generate memory references repeatedly. Unlike deep learning workloads, 
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we can see that write operations occur irrelevant to read operations in traditional workloads as shown in Fig. 

6.   

 

  

Figure 3. Memory reference trend of deep learning workloads based on memory addresses. 

 

Figure 4. Memory reference trend of traditional workloads based on memory addresses. 

 

Figure 5. Memory reference trend of deep learning workloads with unique block number. 

 

Figure 6. Memory reference trend of traditional workloads with unique block number. 
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4. Correlation between Reads and Writes 

In this section, we analyze the correlation of read and write references. That is, we investigate whether 

memory areas with high read rankings also have high write rankings. Figs. 7 and 8 plot the correlation of read 

and write rankings for the same block for deep learning and traditional workloads, respectively. As shown in 

the figure, there is a certain level of correlation between the rankings of read references and write references. 

In particular, the correlation of read and write is high in some deep learning workloads like IMDB and Spam 

Detection. In contrast, as shown in Fig. 8, the correlation between read and write references is relatively lower 

in traditional workloads. To exactly quantify this, we calculate the Pearson Correlation Coefficient based on 

read and write rankings. The result shows that the values of IMDB and Spam Detection are 0.72 and 0.76, 

which are very large compared to traditional workloads, where the values range -0.31 to 0.47.  

 

(a) IMDB            (b) Spam Detection         (c) Fashin MNIST             (d) MNIST 

Figure 7. Correlation of read and write rankings for deep learning workloads. 

 

(a) Game                (b) Office                    (c) PDF                 (d) Photo 

Figure 8. Correlation of read and write rankings for traditional workloads. 

 

5. Analysis of Reference Skewness 

In this section, we analyze the skewed popularity of memory references of deep learning workloads in 

comparison with traditional workloads. This is important for determining the hot data of deep learning 

workloads that reside in memory and setting an appropriate size of memory for the system running the 

workload. Skewed popularity distributions are usually modeled by the Zipf-like distribution. So, our analysis 

focuses on the modeling of memory references as a Zipf-like distribution. Figs. 9 and 10 show the number of 

times that a block has been referenced for the ranking of the block, where ranking 1 is the most frequently 

referenced block. Note that both axes in the figure are in log-scale. The curve in the figure shows that references 
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are excessively biased to some hot blocks. The left part of the curves can be well modeled by a straight line 

(denoted as blue, red, and green lines for read, write, and total references), which implies that the reference 

frequency of the ranking i is proportional to 1/ib, where b is the slope of the line. This type of distribution is 

called a Zipf-like distribution. When b approaches 1, the popularity of blocks is heavily skewed. The skew 

factor in our analysis is in the range of 0.3 to 0.5 regardless of operation types in deep learning workloads. 

This is different from traditional workloads shown in Fig. 10, where the skew factor of write operations ranges 

between 0.4 and 0.8. Although write accounts for a large portion of memory references in deep learning 

workloads, the skew factor is relatively smaller compared to traditional workloads. In other words, there are 

many memory writes in deep learning workloads but they are not excessively concentrated to some hot blocks. 

  

    

Figure 9. Memory reference trend as block ranking increases (deep learning workload). 

     

Figure 10. Memory reference trend as block ranking increases (traditional workload). 

 

6. Conclusion 

As the dataset of deep learning workloads increasingly grows, it is difficult to accommodate the entire 

dataset in memory, leading to significant performance degradations. To handle this situation, this article 

conducted characterization studies for deep learning memory references. In particular, we extracted memory 

reference traces of deep learning workloads, and analyzed them with respect to reference types, operations, 

and reference skewness. From our analysis, we observed some important characteristics of deep learning 

memory references differentiated from traditional workloads. First, instruction references accounts for only 1-

3.3% of memory references in deep learning workloads, which is quite different from traditional workloads of 

15.3-37.5%. Second, write references are dominant in deep learning workloads accounting for 63.7-80.4% of 

memory references. This is also different from read-intensive traditional workloads. Third, the skew factor of 

write references is small compared to traditional workloads. We anticipate that the analysis performed this 

article will be helpful in managing memory management systems of deep learning workloads efficiently. 
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