• Title/Summary/Keyword: Data loading

Search Result 2,120, Processing Time 0.032 seconds

IBS Beam Element for Nonlinear Seismic Analysis of Steel Moment Frames (강재 모멘트 골조의 비선형 지진 해석을 위한 IBS 보 요소)

  • Kim, Dal Sung;Kim, Dong Seong;Kim, Kee Dong;Ko, Man Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.233-242
    • /
    • 2008
  • This study presents a non-prismatic beam element for modeling the elastic and inelastic behavior of steel beams, which have the post-Northridge(cover plate) connections in steel moment frames that are subjected to earthquake ground motions. The elastic stiffness matrix for non-prismatric members with increased beam section (IBS) connection is in the closed-form. The plasticity model is of a discrete type and is composed of a series of nonlinear hinges connected by rigid links. The hardening rules can model the inelastic behavior for monotonic and random cyclic loading, and the effects of local buckling. Moreover the determination of yield surfaces, stiffness parameters, and hardening (or softening) rule parameters for IBS beam element were described. Analytical results of the IBS beam element show good correlation with test data and FEM results.

Feasibility Appraisal and Proposal of a Pile Driving Formula for Domestic Pre-bored Pile Management (국내 매입 말뚝 관리를 위한 항타공식 활용 가능성 평가 및 제안에 관한 연구)

  • Kim, Gunwoong;Seo, Seunghwan;Kim, Juhyong;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.71-84
    • /
    • 2023
  • In accordance with Korean structural foundation design standards, dynamic or static load tests are mandated for 1 to 3% of total piles. The construction quality of the remaining 97% to 99% of piles is determined through penetration measurements. This study aims to enhance the quality control of the majority of piles by adopting a pile driving formula that considers both penetration and hammer energy. The current challenge lies in adapting existing overseas driving formulas to the domestic site conditions, characterized by shallow weathered or soft rocks, and the prevalent use of pre-bored piles. To address this, the Modified Gates formula was refined using domestic dynamic load data, thereby improving its applicability to pile management. Despite employing fewer variables, the proposed formula demonstrates a comparable accuracy to dynamic loading tests in predicting the bearing capacity of pre-bored piles. Consequently, this formula holds promise for practical use in future pile quality management.

Assessment of growing condition variables on alfalfa productivity

  • Ji Yung Kim;Kun Jun Han;Kyung Il Sung;Byong Wan Kim;Moonju Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.939-950
    • /
    • 2023
  • This study was conducted to assess the impact of growing condition variables on alfalfa (Medicago sativa L.) productivity. A total of 197 alfalfa yield results were acquired from the alfalfa field trials conducted by the South Korean National Agricultural Cooperative Federation or Rural Development Administration between 1983 and 2008. The corresponding climate and soil data were collected from the database of the Korean Meteorological Administration. Twenty-three growing condition variables were developed as explaining variables for alfalfa forage biomass production. Among them, twelve variables were chosen based on the significance of the partial-correlation coefficients or potential agricultural values. The selected partial correlation coefficients between the variables and alfalfa forage biomass ranged from -0.021 to 0.696. The influence of the selected twelve variables on yearly alfalfa production was summarized into three dominant factors through factor analysis. Along with the accumulated temperature variables, the loading scores of the daily mean temperature higher than 25℃ were over 0.88 in factor 1. The sunshine duration at temperature between 0℃-25℃ was 0.939 in factor 2. Precipitation days were 0.82, which was the greatest in factor 3. Stepwise regression applied with the three dominant factors resulted in the coefficients of factors 1, 2, and 3 for 0.633, 0.485, and 0.115, respectively, and the R-square of the model was 0.602. The environmental conditions limiting alfalfa growth, such as daily temperature higher than 25℃ or daily mean temperature affected annual alfalfa production most substantially among the growing condition variables. Therefore, future cultivar selection should consider the capability of alfalfa to be tolerant to extreme summer weather along with biomass production potential.

Effect of stud corrosion on stiffness in negative bending moment region of steel-concrete composite beams

  • Yulin Zhan;Wenfeng Huang;Shuoshuo Zhao;Junhu Shao;Dong Shen;Guoqiang Jin
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.59-71
    • /
    • 2023
  • Corrosion of the headed studs shear connectors is an important factor in the reduction of the durability and mechanical properties of the steel-concrete composite structure. In order to study the effect of stud corrosion on the mechanical properties in the negative moment region of steel-concrete composite beams, the corrosion of stud was carried out by accelerating corrosion method with constant current. Static monotonic loading was adopted to evaluate the cracking load, interface slip, mid-span deflection, and ultimate bearing capacity of four composite beams with varying corrosion rates of headed studs. The effect of stud corrosion on the stiffness of the composite beam's hogging moment zone during normal service stage was thoroughly examined. The results indicate that the cracking load decreased by 50% as the corrosion rate of headed studs increase to 10%. Meanwhile, due to the increase of interface slip and mid-span deflection, the bending stiffness dropped significantly with the same load. In comparison to uncorroded specimens, the secant stiffness of specimens with 0.5 times ultimate load was reduced by 25.9%. However, corrosion of shear studs had no obvious effect on ultimate bending capacity. Based on the experimental results and the theory of steel-concrete interface slip, a method was developed to calculate the bending stiffness in the negative bending moment region of composite beams during normal service stage while taking corrosion of headed studs into account. The validity of the calculation method was demonstrated by data analysis.

Generalization and implementation of hardening soil constitutive model in ABAQUS code

  • Bo Songa;Jun-Yan Liu;Yan Liu;Ping Hu
    • Geomechanics and Engineering
    • /
    • v.36 no.4
    • /
    • pp.355-366
    • /
    • 2024
  • The original elastoplastic Hardening Soil model is formulated actually partly under hexagonal pyramidal Mohr-Coulomb failure criterion, and can be only used in specific stress paths. It must be completely generalized under Mohr-Coulomb criterion before its usage in engineering practice. A set of generalized constitutive equations under this criterion, including shear and volumetric yield surfaces and hardening laws, is proposed for Hardening Soil model in principal stress space. On the other hand, a Mohr-Coulumb type yield surface in principal stress space comprises six corners and an apex that make singularity for the normal integration approach of constitutive equations. With respect to the isotropic nature of the material, a technique for processing these singularities by means of Koiter's rule, along with a transforming approach between both stress spaces for both stress tensor and consistent stiffness matrix based on spectral decomposition method, is introduced to provide such an approach for developing generalized Hardening Soil model in finite element analysis code ABAQUS. The implemented model is verified in comparison with the results after the original simulations of oedometer and triaxial tests by means of this model, for volumetric and shear hardenings respectively. Results from the simulation of oedometer test show similar shape of primary loading curve to the original one, while maximum vertical strain is a little overestimated for about 0.5% probably due to the selection of relationships for cap parameters. In simulation of triaxial test, the stress-strain and dilation curves are both in very good agreement with the original curves as well as test data.

Study on Cool-down Analysis Technology for Large Scale Liquid Hydrogen Receiving Terminal (대용량 액체수소 인수기지 쿨다운 해석 기술 연구)

  • CHANG-WON PARK;DONG-HYUK KIM;YEONG-BEOM LEE;HEUNG-SEOK SEO;YOUNG-SOO KWON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.34-39
    • /
    • 2024
  • Korea government is trying to supply liquid hydrogen from another country to domestic The research for liquid hydrogen transportation and liquefaction plant of hydrogen underway for several years, and empirical research is also planned in the future. Along with the development of liquid hydrogen transport ship/liquefaction plant technology, the development of liquid hydrogen reception base technology must be carried out. In this study, a concept level liquid hydrogen receiving terminal is constructed based on the process of the LNG receiving terminal. Based on this, a study is conducted on the development of analysis technology for the amount of BOG (pipe, tank) generated during cooldown and unloading in the liquid hydrogen unloading line (loading arm to storage tank). The research results are intended to be used as basic data for the design and liquid hydrogen receiving terminal in the future.

Stress distribution in implant abutment components made of titanium alloy, zirconia, and polyetheretherketone: a comparative study using finite element analysis (티타늄 합금, 지르코니아, 폴리에테르에테르케톤 지대주 재질에 따른 임플란트 구성요소의 응력분포: 유한 요소 분석을 통한 비교 연구)

  • Sung-Min Kim
    • Journal of Technologic Dentistry
    • /
    • v.46 no.2
    • /
    • pp.21-27
    • /
    • 2024
  • Purpose: This study aimed to analyze the stress distribution and deformation in implant abutments made from titanium (Ti-6Al-4V), zirconia, and polyetheretherketone (PEEK), including their screws and fixtures, under various loading conditions using finite element analysis (FEA). Methods: Three-dimensional models of the mandible with implant abutments were created using Siemens NX software (NX10.0.0.24, Siemens). FEA was conducted using Abaqus to simulate occlusal loads and assess stress distribution and deformation. Material properties such as Young's modulus and Poisson's ratio were assigned to each component based on literature and experimental data. Results: The FEA results revealed distinct stress distribution patterns among the materials. Titanium alloy abutments exhibited the highest stress resistance and the most uniform stress distribution, making them highly suitable for long-term stability. Zirconia abutments showed strong mechanical properties with higher stress concentration, indicating potential vulnerability to fracture despite their aesthetic advantages. PEEK abutments demonstrated the least stress resistance and higher deformation compared to other abutment materials, but offered superior shock absorption, though they posed a higher risk of mechanical failure under high load conditions. Conclusion: The study emphasizes the importance of selecting appropriate materials for dental implants. Titanium offers durability and uniform stress distribution, making it highly suitable for long-term stability. Zirconia provides aesthetic benefits but has a higher risk of fracture compared to titanium. PEEK excels in shock absorption but has a higher risk of mechanical failure compared to both titanium and zirconia. These insights can guide improved implant designs and material choices for various clinical needs.

Cell clusters in intervertebral disc degeneration: an attempted repair mechanism aborted via apoptosis

  • Polly Lama;Jerina Tiwari;Pulkit Mutreja;Sukirti Chauhan;Ian J Harding;Trish Dolan;Michael A Adams;Christine Le Maitre
    • Anatomy and Cell Biology
    • /
    • v.56 no.3
    • /
    • pp.382-393
    • /
    • 2023
  • Cell clusters are a histological hallmark feature of intervertebral disc degeneration. Clusters arise from cell proliferation, are associated with replicative senescence, and remain metabolically, but their precise role in various stages of disc degeneration remain obscure. The aim of this study was therefore to investigate small, medium, and large size cell-clusters. For this purpose, human disc samples were collected from 55 subjects, aged 37-72 years, 21 patients had disc herniation, 10 had degenerated non-herniated discs, and 9 had degenerative scoliosis with spinal curvature <45°. 15 non-degenerated control discs were from cadavers. Clusters and matrix changes were investigated with histology, immunohistochemistry, and Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Data obtained were analyzed with spearman rank correlation and ANOVA. Results revealed, small and medium-sized clusters were positive for cell proliferation markers Ki-67 and proliferating cell nuclear antigen (PCNA) in control and slightly degenerated human discs, while large cell clusters were typically more abundant in severely degenerated and herniated discs. Large clusters associated with matrix fissures, proteoglycan loss, matrix metalloproteinase-1 (MMP-1), and Caspase-3. Spatial association findings were reconfirmed with SDS-PAGE that showed presence to these target markers based on its molecular weight. Controls, slightly degenerated discs showed smaller clusters, less proteoglycan loss, MMP-1, and Caspase-3. In conclusion, cell clusters in the early stages of degeneration could be indicative of repair, however sustained loading increases large cell clusters especially around microscopic fissures that accelerates inflammatory catabolism and alters cellular metabolism, thus attempted repair process initiated by cell clusters fails and is aborted at least in part via apoptosis.

Service life evaluation of HPC with increasing surface chlorides from field data in different sea conditions

  • Jong-Suk Lee;Keun-Hyeok Yang;Yong-Sik Yoon;Jin-Won Nam;Seug-Jun Kwon
    • Advances in concrete construction
    • /
    • v.16 no.3
    • /
    • pp.155-167
    • /
    • 2023
  • The penetrated chloride in concrete has different behavior with mix proportions and local exposure conditions, even in the same environments, so that it is very important to quantify surface chloride contents for durability design. As well known, the surface chloride content which is a key parameter like external loading in structural safety design increases with exposure period. In this study, concrete samples containing OPC (Ordinary Portland Cement), GGBFS (Ground Granulated Blast Furnace Slag), and FA (Fly Ash) had been exposed to submerged, tidal, and splash area for 5 years, then the surface chloride contents changing with exposure period were evaluated. The surface chloride contents were obtained from the chloride profile based on the Fick's 2nd Law, and the regression analysis for them was performed with exponential and square root function. After exposure period of 5 years in submerged and tidal area conditions, the surface chloride content of OPC concrete increased to 6.4 kg/m3 - 7.3 kg/m3, and the surface chloride content of GGBFS concrete was evaluated as 7.3 kg/m3 - 11.5 kg/m3. In the higher replacement ratio of GGBFS, the higher surface chloride contents were evaluated. The surface chloride content in FA concrete showed a range of 6.7 kg/m3 to 9.9 kg/m3, which was the intermediate level of OPC and GGBFS concrete. In the case of splash area, the surface chloride contents in all specimens were from 0.59 kg/m3 to 0.75 kg/m3, which was the lowest of all exposure conditions. Experimental constants available for durability design of chloride ingress were derived through regression analysis over exposure period. In the concrete with GGBFS replacement ratio of 50%, the increase rate of surface chloride contents decreased rapidly as the water to binder ratio increased.

Ergonomic Approach through Process Analysis of Delivery Work (택배 배송 작업의 공정분석을 통한 인간공학적 접근 방안)

  • Sejung Lee;Sangeun Jin;Seong Rok Chang
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.1
    • /
    • pp.55-61
    • /
    • 2024
  • In response to the COVID-19 pandemic, the logistics industry in Korea has rapidly been expanding, with offline demand concentrating on online platforms owing to the development of digital infrastructure. This has increased the workload of courier drivers considerably, along with labor intensity. A delivery driver died recently from overwork due to the continuous increase in delivery volume, which raises social concerns. Delivery drivers work long hours, (over 12 hours) and are greatly affected by weather conditions, such as snow, rain, heat waves, and cold waves. In addition, they lack a fixed workplace; perform atypical work handling workpieces of various sizes, weights, and shapes; and spend a large amount of time driving as part of their work. This work involves a high level of tension and requires attention and concentration. Despite the frequency of industrial accidents in the courier industry, studies on safety and health to quantitatively analyze and systematize the work of courier workers are very scarce. Therefore, to define the work process necessary for investigating the harmful factors in delivery service and the work analysis, this study conducted interviews and on-site surveys to analyze the unit work of the delivery service by targeting delivery workers. In other words, a framework of unit work for work analysis was presented to enable research and analysis by considering the aforementioned characteristics of the courier industry. The process was broadly divided into work, transport, storage, delay, and inspection. Work was divided into loading, sorting, unloading, and door subcategories, and transportation was divided into vehicle, cart, and walking subcategories as well as 10 small processes. Moreover, 22 unit works were again drawn by conducting field surveys and interviews. The risk of unit work derived from this study was ergonomically evaluated, and the ergonomic analysis revealed that uploading and transportation were the most dangerous. The results of this study could be used as basic data for preventing industrial accidents among courier workers, whose work has increased with the logistics volume and the development of the logistics industry.