KSII Transactions on Internet and Information Systems (TIIS)
/
제11권10호
/
pp.4717-4737
/
2017
Today, smart grids, smart homes, smart water networks, and intelligent transportation, are infrastructure systems that connect our world more than we ever thought possible and are associated with a single concept, the Internet of Things (IoT). The number of devices connected to the IoT and hence the number of traffic flow increases continuously, as well as the emergence of new applications. Although cutting-edge hardware technology can be employed to achieve a fast implementation to handle this huge data streams, there will always be a limit on size of traffic supported by a given architecture. However, recent cloud-based big data technologies fortunately offer an ideal environment to handle this issue. Moreover, the ever-increasing high volume of traffic created on demand presents great challenges for flow management. As a solution, flow aggregation decreases the number of flows needed to be processed by the network. The previous works in the literature prove that most of aggregation strategies designed for smart grids aim at optimizing system operation performance. They consider a common identifier to aggregate traffic on each device, having its independent static aggregation policy. In this paper, we propose a dynamic approach to aggregate flows based on traffic characteristics and device preferences. Our algorithm runs on a big data platform to provide an end-to-end network visibility of flows, which performs high-speed and high-volume computations to identify the clusters of similar flows and aggregate massive number of mice flows into a few meta-flows. Compared with existing solutions, our approach dynamically aggregates large number of such small flows into fewer flows, based on traffic characteristics and access node preferences. Using this approach, we alleviate the problem of processing a large amount of micro flows, and also significantly improve the accuracy of meeting the access node QoS demands. We conducted experiments, using a dataset of up to 100,000 flows, and studied the performance of our algorithm analytically. The experimental results are presented to show the promising effectiveness and scalability of our proposed approach.
본 논문에서는 노드 밀도를 고려하여 클러스터를 형성함으로써 데이터 병합 효과를 최대화하고, 에너지 소모를 줄일 수 있는 새로운 클러스터링 기법을 제안한다. 이 기법은 최적의 데이터 병합율을 보장할 수 있도록 클러스터 크기를 결정하기 때문에 메시지 전송 반경을 줄이고, 클러스터간의 간섭을 최소화할 수 있다. 또한 지역적으로 인접한 다수의 노드들을 클러스터로 구성하고 멤버 노드로부터 수신된 데이터를 병합하여 전송함으로써 에너지 소모를 줄인다. 시뮬레이션을 통하여 센서 네트워크를 구성하는 노드의 에너지 소모를 최소화하면 센서 네트워크의 생존시간을 연장할 수 있음을 검증한다. 또한 제안한 클러스터링 기법이 기존의 LEACH 클러스터링 기법에 비해 성능이 우수함을 보인다.
무선 센서 네트워크에서 효율적인 데이터 처리와 신속한 전송을 위해 사용되는 미들웨어는 순간적인 데이터 밀집현상으로 발생하는 중간 노드의 데이터 손실 문제를 해결해야한다. 본 논문에서는 계산 능력, 소비 전력 등 극히 한정된 자원만을 사용하여 데이터를 전달해야 하는 무선 센서 네트워크 환경에서 수집된 데이터의 효율성 및 정확성을 향상시킬 수 있는 Delta-Average 기법을 제시하였다. 제안된 기법을 통해 데이터의 상이성과 평균화 방식을 이용함으로써 순간적인 데이터 밀집현상으로부터 중복된 데이터에 대한 불필요한 전송을 방지하면서 정확성을 높이도록 하였다. 마지막으로 제안된 기법의 성능을 평가하기 위해 TinyDB에서 TOSSIM 시뮬레이션을 수행하였으며 성능분석 결과를 통해 데이터 정확성이 향상되었음을 검증하였다.
수중센서네트워크 응용은 적용 대상 및 지역적 범위에 따라 효과적인 모델링이 필요하고 이러한 특정화된 응용 모델 기반에서 에너지 효율적인 데이터통합 방법이 필요하다. 본 논문에서는 수중에 고정된 닻으로 좌우 움직임이 가능한 센서노드들로 구성된 3차원 육각기둥 벌집모델에 기초하여 오염 및 침투 감시용 응용 모델링 및 이를 기초로 한다. 이 모델에서는 층별 구성 셀들의 이벤트 감지 데이터와 해당 층 위치 데이터를 수면기지국까지 효율적으로 전송하면 그 목적이 달성된다. 여기서 기존의 데이터통합 방법을 적용하면 최소 경로나 멀티캐스트 트리에 기반된 관계로 과정이 복잡하여 에너지 비효율적이다. 본 논문에서는 층별 셀들에서 발생되는 이벤트 데이터를 해당 층 헤드노드로 효과적으로 전달하기위한 클러스터 내부에서 클러스터 기반의 에너지 효율적인 세 가지 가능한 데이터통합 방법을 제시한다. 그리고 층별 클러스터 헤드노드에서 수집된 데이터를 기지국까지 효율적으로 전달하기위한 클러스터 간 세 가지 데이터통합 방법도 제시한다. 제시된 데이터통합 방법들은 주어진 영역 침투 감시등과 같은 특정화된 응용 대상으로 동작의 단순성과 에너지 효율화 측면이 주된 고려 요소이다. 마지막으로 시뮬레이션과 성능 비교분석을 통해 제시된 클러스터 층별 및 층간 데이터통합 방법의 조합 중 가장 우수한 에너지 효율적인 데이터통합 방법을 도출한다.
GR-tree and query aggregation techniques have been proposed for spatial query processing in conventional spatial query processing for wireless sensor networks. Although these spatial query processing techniques consider spatial query optimization, time query optimization is not taken into consideration. The index reorganization cost and communication cost for the parent sensor nodes increase the energy consumption that is required to ensure the most efficient operation in the wireless sensor node. This paper proposes itinerary-based R-tree (IR-tree) for more efficient spatial-temporal query processing in wireless sensor networks. This paper analyzes the performance of previous studies and IR-tree, which are the conventional spatial query processing techniques, with regard to the accuracy, energy consumption, and query processing time of the query results using the wireless sensor data with Uniform, Gauss, and Skew distributions. This paper proves the superiority of the proposed IR-tree-based space-time indexing.
Data convergecast is an indispensable task for any WSN applications. Typically, scheduling in the WSN consists of two phases: tree construction and scheduling. The optimal tree structure and scheduling for the network is proven NP-hard. This paper focuses on the delay optimality while constructing the data convergecast tree. The algorithm can take any tree as the input, and by performing the switches (i.e. a node changes its parent), the expected aggregation delay is potentially reduced. Note that while constructing the tree, only the in-tree collisions between the child nodes sending data to their common parent is considered.
KSII Transactions on Internet and Information Systems (TIIS)
/
제3권6호
/
pp.612-627
/
2009
The high-level contribution of this paper is to illustrate the effectiveness of using graph theory tree traversal algorithms (pre-order, in-order and post-order traversals) to generate the chain of sensor nodes in the classical Power Efficient-Gathering in Sensor Information Systems (PEGASIS) data aggregation protocol for wireless sensor networks. We first construct an undirected minimum-weight spanning tree (ud-MST) on a complete sensor network graph, wherein the weight of each edge is the Euclidean distance between the constituent nodes of the edge. A Breadth-First-Search of the ud-MST, starting with the node located closest to the center of the network, is now conducted to iteratively construct a rooted directed minimum-weight spanning tree (rd-MST). The three tree traversal algorithms are then executed on the rd-MST and the node sequence resulting from each of the traversals is used as the chain of nodes for the PEGASIS protocol. Simulation studies on PEGASIS conducted for both TDMA and CDMA systems illustrate that using the chain of nodes generated from the tree traversal algorithms, the node lifetime can improve as large as by 19%-30% and at the same time, the energy loss per node can be 19%-35% lower than that obtained with the currently used distance-based greedy heuristic.
In this paper, a new indexing technique is proposed for efficient evaluation of nested queries on aggregation hierarchy in object-oriented data model. As an index data structure, an extended $B^{+}$ tree is introduced in which instance identifier to be searched and path information used for update of index record are stored in leaf node and subleaf node, respectively. the retrieval and update algorithm on the introduced index data structure is provided. Comparisons under a variety of conditions are given with current indexing techniques, showing improved performance in cost, i.e., the total number of pages accessed for retrieval and update.
무선 센서 네트워크의 생존시간을 증가시키기 위하여 중계노드에서의 데이터 병합을 고려한 데이터 중심 라우팅이 필요하다. 본 논문에서는 무선 센서 네트워크에서 센싱 정보의 수집 시간과 노드의 에너지 소비량 간의 트레이드 오프를 고려하여 에너지 소비를 최소화하면서도 빠른 시간 내에 센싱 정보를 수집하는 에너지 효율적인 데이터 중심 라우팅 알고리즘을 제안한다. 제안 하는 라우팅 방식은 먼저 전체 센서 노드 중에서 최대 거리가 최소화가 되도록 만드는 노드를 싱크 노드로 설정한다. 이후 빠른 정보 수집을 위하여 센서 노드와 싱크 노드 간 최대 거리의 증가를 최소화하면서 에너지 소비를 줄이기 위하여 노드간 연결 링크 비용을 최소화하는 방식으로 트리 구조를 확장해나간다. 시뮬레이션 결과, 제안하는 데이터 중심 라우팅 알고리즘은 짧은 정보 수집 시간과 낮은 에너지 소비량을 가지며, 이로 인하여 기존 라우팅 알고리즘 대비 높은 네트워크 에너지 효율을 달성한다.
무선 센서 네트워크는 싱크 노드로 데이터가 집중되는 수렴적인 구조로 인해 네트워크 내 불균형적인 에너지 소모가 발생한다. 이러한 문제를 해결하기 위해 기존 연구에서는 소스 노드 및 싱크 노드 사이에 중계 노드를 배치하여 싱크 노드로 집중되기 전 데이터를 병합 및 처리하였다. 하지만 링크 품질을 고려하지 않은 중계 노드의 배치는 재구성된 라우팅 경로의 링크 품질에 따른 패킷 손실을 야기한다. 따라서 본 논문에서는 중계 노드 선정을 위한 라우팅 경로 재구성 시 데이터 신뢰성을 고려한 링크 비용 산출 방법을 제안한다. 라우팅 메트릭 값으로 홉 수 및 RSSI를 고려한 링크 비용 산출 수식을 제안하며 센서 모듈 간 패킷 전송 실험을 통해 RSSI 임계값을 선정한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.