• Title/Summary/Keyword: Data Visualization System

Search Result 785, Processing Time 0.028 seconds

Building Hierarchical Knowledge Base of Research Interests and Learning Topics for Social Computing Support (소셜 컴퓨팅을 위한 연구·학습 주제의 계층적 지식기반 구축)

  • Kim, Seonho;Kim, Kang-Hoe;Yeo, Woondong
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.489-498
    • /
    • 2012
  • This paper consists of two parts: In the first part, we describe our work to build hierarchical knowledge base of digital library patron's research interests and learning topics in various scholarly areas through analyzing well classified Electronic Theses and Dissertations (ETDs) of NDLTD Union catalog. Journal articles from ACM Transactions and conference web sites of computing areas also are added in the analysis to specialize computing fields. This hierarchical knowledge base would be a useful tool for many social computing and information service applications, such as personalization, recommender system, text mining, technology opportunity mining, information visualization, and so on. In the second part, we compare four grouping algorithms to select best one for our data mining researches by testing each one with the hierarchical knowledge base we described in the first part. From these two studies, we intent to show traditional verification methods for social community miming researches, based on interviewing and answering questionnaires, which are expensive, slow, and privacy threatening, can be replaced with systematic, consistent, fast, and privacy protecting methods by using our suggested hierarchical knowledge base.

A Study on the Effective Fire and Smoke Control in Semi-Transverse Ventilation (균일배기 환기방식에서의 배연특성에 관한 연구)

  • Jeon, Yong-Han;Kim, Jong-Yoon;Seo, Young-Ho;Yoo, Oh-Ji;Han, Sang-Pil
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.90-94
    • /
    • 2010
  • In this study it is intended to review the moving characteristics of smoke by performing visualization simulation for the calculation of the optimal smoke exhaust air volume in case a fire occurs in tunnels where transverse ventilation is applied, and to obtain basic data necessary for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions under various conditions. As a result of this study, if it was assumed 0 critical velocity in the tunnel, the smoke exhaust air volume was limited within 250 meter in the road-tunnel disaster prevention indicator and the exhaust efficiency was from 55.1% to 95.8% in the result of this study. If the wind velocity is in the tunnel, the exhaust rate intends to increase rapidly and the exhaust efficiency is decreased. In addition, if the wind velocity is increased, the exhaust rate should be increased in compared with the generation rate of smoke in maximum 1.8 or 1.04 times. In this study, when the wind velocity is in the tunnel, the limited exhaust rate is $84m^3/s{\cdot}250m$. And if it was assumed 1.75 m/s critical velocity in the tunnel, the exhaust rate would be defined $393m^3/s{\cdot}250m$($Q_E$ = 80 + 5Ar).

A Study on the Current Situation of Musical Performance in the COVID-19 Era and Its Direction (코로나19에 의한 뮤지컬 공연현황과 방향성에 관한 연구)

  • Bae, Hye-Ryung;Shin, Jong-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.9
    • /
    • pp.372-390
    • /
    • 2021
  • The objective of this study is to understand the current status of damage to Korean musical caused by the COVID-19, and also to seek for the coping measures and development direction in the post-Corona era. Thus, to understand the current status of damage, this study mainly researched the contents of NAVER TV musical performance transmitted for three years from March 2018 to February 2021 for analyzing the online performance and performance statistical data of Performing Arts Box Office Information System. As a result, this study could find a hypothesis and grounds to simultaneously verify and draw the positive and negative sides, pessimistic implications, and optimistic possibility. First, the performing arts would be multilaterally expanded after being divided into offline performance and online performance. Second, the utilization of online performance could narrow the gap(polarization) between capital area and non-capital area. Third, it is urgently needed to develop a win-win model for the establishment of a new musical market. Fourth, the performers' copyrights should be fairly protected. Fifth, the visualization requires the Korean-style support foundation and talent equipped with convergent thinking and knowledge. In such temporal changes from offline performance to online performance, there should be more sophisticated qualitative and quantitative growth in musical market.

Development of A Quantitative Risk Assessment Model by BIM-based Risk Factor Extraction - Focusing on Falling Accidents - (BIM 기반 위험요소 도출을 통한 정량적 위험성 평가 모델 개발 - 떨어짐 사고를 중심으로 -)

  • Go, Huijea;Hyun, Jihun;Lee, Juhee;Ahn, Joseph
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.4
    • /
    • pp.15-25
    • /
    • 2022
  • As the incidence and mortality of serious disasters in the construction industry are the highest, various efforts are being made in Korea to reduce them. Among them, risk assessment is used as data for disaster reduction measures and evaluation of risk factors at the construction stage. However, the existing risk assessment involves the subjectivity of the performer and is vulnerable to the domestic construction site. This study established a DB classification system for risk assessment with the aim of early identification and pre-removal of risks by quantitatively deriving risk factors using BIM in the risk assessment field and presents a methodology for risk assessment using BIM. Through this, prior removal of risks increases the safety of construction workers and reduces additional costs in the field of safety management. In addition, since it can be applied to new construction methods, it improves the understanding of project participants and becomes a tool for communication. This study proposes a framework for deriving quantitative risks based on BIM, and will be used as a base technology in the field of risk assessment using BIM in the future.

Geological Factor Analysis for Evaluating the Long-term Safety Performance of Natural Barriers in Deep Geological Repository System of High-level Radioactive Waste (지질학적 심지층 처분지 내 천연방벽의 고준위 방사성 폐기물 장기 처분 안전성 평가를 위한 지질학적 인자 분석)

  • Hyeongmok Lee;Jiho Jeong;Jaesung Park;Subi Lee;Suwan So;Jina Jeong
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.533-545
    • /
    • 2023
  • In this study, an investigation was conducted on the features, events, and processes (FEP) that could impact the long-term safety of the natural barriers constituting high-level radioactive waste geological repositories. The FEP list was developed utilizing the IFEP list 3.0 provided by the Nuclear Energy Agency (NEA) as foundational data, supplemented by geological investigations and research findings from leading countries in this field. A total of 49 FEPs related to the performance of the natural barrier were identified. For each FEP, detailed definitions, classifications, impacts on long-term safety, significance in domestic conditions, and feasibility of quantification were provided. Moreover, based on the compiled FEP list, three scenarios that could affect the long-term safety of the disposal facility were developed. Geological factors affecting the performance of the natural barrier in each scenario were selected and their relationships were visualized. The constructed FEP list and the visualization of interrelated factors in various scenarios are anticipated to provide essential information for selecting and organizing factors that must be considered in the development of mathematical models for quantitatively evaluating the long-term safety of deep geological repositories. In addition, these findings could be effectively utilized in establishing criteria related to the key performance of natural barriers for the confirmation of repository sites.

A Study of 'Emotion Trigger' by Text Mining Techniques (텍스트 마이닝을 이용한 감정 유발 요인 'Emotion Trigger'에 관한 연구)

  • An, Juyoung;Bae, Junghwan;Han, Namgi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.69-92
    • /
    • 2015
  • The explosion of social media data has led to apply text-mining techniques to analyze big social media data in a more rigorous manner. Even if social media text analysis algorithms were improved, previous approaches to social media text analysis have some limitations. In the field of sentiment analysis of social media written in Korean, there are two typical approaches. One is the linguistic approach using machine learning, which is the most common approach. Some studies have been conducted by adding grammatical factors to feature sets for training classification model. The other approach adopts the semantic analysis method to sentiment analysis, but this approach is mainly applied to English texts. To overcome these limitations, this study applies the Word2Vec algorithm which is an extension of the neural network algorithms to deal with more extensive semantic features that were underestimated in existing sentiment analysis. The result from adopting the Word2Vec algorithm is compared to the result from co-occurrence analysis to identify the difference between two approaches. The results show that the distribution related word extracted by Word2Vec algorithm in that the words represent some emotion about the keyword used are three times more than extracted by co-occurrence analysis. The reason of the difference between two results comes from Word2Vec's semantic features vectorization. Therefore, it is possible to say that Word2Vec algorithm is able to catch the hidden related words which have not been found in traditional analysis. In addition, Part Of Speech (POS) tagging for Korean is used to detect adjective as "emotional word" in Korean. In addition, the emotion words extracted from the text are converted into word vector by the Word2Vec algorithm to find related words. Among these related words, noun words are selected because each word of them would have causal relationship with "emotional word" in the sentence. The process of extracting these trigger factor of emotional word is named "Emotion Trigger" in this study. As a case study, the datasets used in the study are collected by searching using three keywords: professor, prosecutor, and doctor in that these keywords contain rich public emotion and opinion. Advanced data collecting was conducted to select secondary keywords for data gathering. The secondary keywords for each keyword used to gather the data to be used in actual analysis are followed: Professor (sexual assault, misappropriation of research money, recruitment irregularities, polifessor), Doctor (Shin hae-chul sky hospital, drinking and plastic surgery, rebate) Prosecutor (lewd behavior, sponsor). The size of the text data is about to 100,000(Professor: 25720, Doctor: 35110, Prosecutor: 43225) and the data are gathered from news, blog, and twitter to reflect various level of public emotion into text data analysis. As a visualization method, Gephi (http://gephi.github.io) was used and every program used in text processing and analysis are java coding. The contributions of this study are as follows: First, different approaches for sentiment analysis are integrated to overcome the limitations of existing approaches. Secondly, finding Emotion Trigger can detect the hidden connections to public emotion which existing method cannot detect. Finally, the approach used in this study could be generalized regardless of types of text data. The limitation of this study is that it is hard to say the word extracted by Emotion Trigger processing has significantly causal relationship with emotional word in a sentence. The future study will be conducted to clarify the causal relationship between emotional words and the words extracted by Emotion Trigger by comparing with the relationships manually tagged. Furthermore, the text data used in Emotion Trigger are twitter, so the data have a number of distinct features which we did not deal with in this study. These features will be considered in further study.

An Investigation on the Periodical Transition of News related to North Korea using Text Mining (텍스트마이닝을 활용한 북한 관련 뉴스의 기간별 변화과정 고찰)

  • Park, Chul-Soo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.63-88
    • /
    • 2019
  • The goal of this paper is to investigate changes in North Korea's domestic and foreign policies through automated text analysis over North Korea represented in South Korean mass media. Based on that data, we then analyze the status of text mining research, using a text mining technique to find the topics, methods, and trends of text mining research. We also investigate the characteristics and method of analysis of the text mining techniques, confirmed by analysis of the data. In this study, R program was used to apply the text mining technique. R program is free software for statistical computing and graphics. Also, Text mining methods allow to highlight the most frequently used keywords in a paragraph of texts. One can create a word cloud, also referred as text cloud or tag cloud. This study proposes a procedure to find meaningful tendencies based on a combination of word cloud, and co-occurrence networks. This study aims to more objectively explore the images of North Korea represented in South Korean newspapers by quantitatively reviewing the patterns of language use related to North Korea from 2016. 11. 1 to 2019. 5. 23 newspaper big data. In this study, we divided into three periods considering recent inter - Korean relations. Before January 1, 2018, it was set as a Before Phase of Peace Building. From January 1, 2018 to February 24, 2019, we have set up a Peace Building Phase. The New Year's message of Kim Jong-un and the Olympics of Pyeong Chang formed an atmosphere of peace on the Korean peninsula. After the Hanoi Pease summit, the third period was the silence of the relationship between North Korea and the United States. Therefore, it was called Depression Phase of Peace Building. This study analyzes news articles related to North Korea of the Korea Press Foundation database(www.bigkinds.or.kr) through text mining, to investigate characteristics of the Kim Jong-un regime's South Korea policy and unification discourse. The main results of this study show that trends in the North Korean national policy agenda can be discovered based on clustering and visualization algorithms. In particular, it examines the changes in the international circumstances, domestic conflicts, the living conditions of North Korea, the South's Aid project for the North, the conflicts of the two Koreas, North Korean nuclear issue, and the North Korean refugee problem through the co-occurrence word analysis. It also offers an analysis of South Korean mentality toward North Korea in terms of the semantic prosody. In the Before Phase of Peace Building, the results of the analysis showed the order of 'Missiles', 'North Korea Nuclear', 'Diplomacy', 'Unification', and ' South-North Korean'. The results of Peace Building Phase are extracted the order of 'Panmunjom', 'Unification', 'North Korea Nuclear', 'Diplomacy', and 'Military'. The results of Depression Phase of Peace Building derived the order of 'North Korea Nuclear', 'North and South Korea', 'Missile', 'State Department', and 'International'. There are 16 words adopted in all three periods. The order is as follows: 'missile', 'North Korea Nuclear', 'Diplomacy', 'Unification', 'North and South Korea', 'Military', 'Kaesong Industrial Complex', 'Defense', 'Sanctions', 'Denuclearization', 'Peace', 'Exchange and Cooperation', and 'South Korea'. We expect that the results of this study will contribute to analyze the trends of news content of North Korea associated with North Korea's provocations. And future research on North Korean trends will be conducted based on the results of this study. We will continue to study the model development for North Korea risk measurement that can anticipate and respond to North Korea's behavior in advance. We expect that the text mining analysis method and the scientific data analysis technique will be applied to North Korea and unification research field. Through these academic studies, I hope to see a lot of studies that make important contributions to the nation.

Analysis of Munitions Contract Work Using Process Mining (프로세스 마이닝을 이용한 군수품 계약업무 분석 : 공군 군수사 계약업무를 중심으로)

  • Joo, Yong Seon;Kim, Su Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.41-59
    • /
    • 2022
  • The timely procurement of military supplies is essential to maintain the military's operational capabilities, and contract work is the first step toward timely procurement. In addition, rapid signing of a contract enables consumers to set a leisurely delivery date and increases the possibility of budget execution, so it is essential to improve the contract process to prevent early execution of the budget and transfer or disuse. Recently, research using big data has been actively conducted in various fields, and process analysis using big data and process mining, an improvement technique, are also widely used in the private sector. However, the analysis of contract work in the military is limited to the level of individual analysis such as identifying the cause of each problem case of budget transfer and disuse contracts using the experience and fragmentary information of the person in charge. In order to improve the contract process, this study analyzed using the process mining technique with data on a total of 560 contract tasks directly contracted by the Department of Finance of the Air Force Logistics Command for about one year from November 2019. Process maps were derived by synthesizing distributed data, and process flow, execution time analysis, bottleneck analysis, and additional detailed analysis were conducted. As a result of the analysis, it was found that review/modification occurred repeatedly after request in a number of contracts. Repeated reviews/modifications have a significant impact on the delay in the number of days to complete the cost calculation, which has also been clearly revealed through bottleneck visualization. Review/modification occurs in more than 60% of the top 5 departments with many contract requests, and it usually occurs in the first half of the year when requests are concentrated, which means that a thorough review is required before requesting contracts from the required departments. In addition, the contract work of the Department of Finance was carried out in accordance with the procedures according to laws and regulations, but it was found that it was necessary to adjust the order of some tasks. This study is the first case of using process mining for the analysis of contract work in the military. Based on this, if further research is conducted to apply process mining to various tasks in the military, it is expected that the efficiency of various tasks can be derived.

The study of stereoscopic editing process with applying depth information (깊이정보를 활용한 입체 편집 프로세스 연구)

  • Baek, Kwang-Ho;Kim, Min-Seo;Han, Myung-Hee
    • Journal of Digital Contents Society
    • /
    • v.13 no.2
    • /
    • pp.225-233
    • /
    • 2012
  • The 3D stereoscopic image contents have been emerging as the blue chip of the contents market of the next generation since the . However, all the 3D contents created commercially in the country have failed to enter box office. It is because the quality of Korean 3D contents is much lower than that of overseas contents and also current 3D post production process is based on 2D. Considering all these facts, the 3D editing process has connection with the quality of contents. The current 3D editing processes of the production case of are using the way that edits with the system on basis of 2D, followed by checking with 3D display system and modifying, if there are any problems. In order to improve those conditions, I suggest that the 3D editing process contain more objectivity by visualizing the depth data applied in some composition work such as Disparity map, Depth map, and the current 3D editing process. The proposed process has been used in the music drama , comparing with those of the film . The 3D values could be checked among cuts which have been changed a lot since those of , while the 3D value of drew an equal result in general. Since the current process is based on an artist's subjective sense of 3D, it could be changed according to the condition and state of the artist. Furthermore, it is impossible for us to predict the positive range, so it is apprehended that the cubic effect of space might be perverted by showing each different 3D value according to cuts in the same space or a limited space. On the other hand, the objective 3D editing by applying the visualization of depth data can adjust itself to the cubic effect of the same space and the whole content equally, which will enrich the 3D contents. It will even be able to solve some problems such as distortion of cubic effect and visual fatigue, etc.

Strategy for Store Management Using SOM Based on RFM (RFM 기반 SOM을 이용한 매장관리 전략 도출)

  • Jeong, Yoon Jeong;Choi, Il Young;Kim, Jae Kyeong;Choi, Ju Choel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.93-112
    • /
    • 2015
  • Depending on the change in consumer's consumption pattern, existing retail shop has evolved in hypermarket or convenience store offering grocery and daily products mostly. Therefore, it is important to maintain the inventory levels and proper product configuration for effectively utilize the limited space in the retail store and increasing sales. Accordingly, this study proposed proper product configuration and inventory level strategy based on RFM(Recency, Frequency, Monetary) model and SOM(self-organizing map) for manage the retail shop effectively. RFM model is analytic model to analyze customer behaviors based on the past customer's buying activities. And it can differentiates important customers from large data by three variables. R represents recency, which refers to the last purchase of commodities. The latest consuming customer has bigger R. F represents frequency, which refers to the number of transactions in a particular period and M represents monetary, which refers to consumption money amount in a particular period. Thus, RFM method has been known to be a very effective model for customer segmentation. In this study, using a normalized value of the RFM variables, SOM cluster analysis was performed. SOM is regarded as one of the most distinguished artificial neural network models in the unsupervised learning tool space. It is a popular tool for clustering and visualization of high dimensional data in such a way that similar items are grouped spatially close to one another. In particular, it has been successfully applied in various technical fields for finding patterns. In our research, the procedure tries to find sales patterns by analyzing product sales records with Recency, Frequency and Monetary values. And to suggest a business strategy, we conduct the decision tree based on SOM results. To validate the proposed procedure in this study, we adopted the M-mart data collected between 2014.01.01~2014.12.31. Each product get the value of R, F, M, and they are clustered by 9 using SOM. And we also performed three tests using the weekday data, weekend data, whole data in order to analyze the sales pattern change. In order to propose the strategy of each cluster, we examine the criteria of product clustering. The clusters through the SOM can be explained by the characteristics of these clusters of decision trees. As a result, we can suggest the inventory management strategy of each 9 clusters through the suggested procedures of the study. The highest of all three value(R, F, M) cluster's products need to have high level of the inventory as well as to be disposed in a place where it can be increasing customer's path. In contrast, the lowest of all three value(R, F, M) cluster's products need to have low level of inventory as well as to be disposed in a place where visibility is low. The highest R value cluster's products is usually new releases products, and need to be placed on the front of the store. And, manager should decrease inventory levels gradually in the highest F value cluster's products purchased in the past. Because, we assume that cluster has lower R value and the M value than the average value of good. And it can be deduced that product are sold poorly in recent days and total sales also will be lower than the frequency. The procedure presented in this study is expected to contribute to raising the profitability of the retail store. The paper is organized as follows. The second chapter briefly reviews the literature related to this study. The third chapter suggests procedures for research proposals, and the fourth chapter applied suggested procedure using the actual product sales data. Finally, the fifth chapter described the conclusion of the study and further research.