• Title/Summary/Keyword: Data Spill

Search Result 145, Processing Time 0.023 seconds

A Study of Patient's Privacy Protection in U-Healthcare (유헬스케어에서 환자의 프라이버시 보호 방안 연구)

  • Jeong, Yoon-Su;Lee, Sang-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.4
    • /
    • pp.913-921
    • /
    • 2012
  • On the strength of the rapid development and propagation of U-healthcare service, the service technologies are full of important changes. However, U-healthcare service has security problem that patient's biometric information can be easily exposed to the third party without service users' consent. This paper proposes a distributed model according authority and access level of hospital officials in order to safely access patients' private information in u-Healthcare Environment. Proposed model can both limit the access to patients' biometric information and keep safe system from DoS attack using time stamp. Also, it can prevent patients' data spill and privacy intrusion because the main server simultaneously controls hospital officials and the access by the access range of officials from each hospital.

Marine Disasters Prediction System Model Using Marine Environment Monitoring (해양환경 모니터링을 이용한 해양재해 예측 시스템 모델)

  • Park, Sun;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.3
    • /
    • pp.263-270
    • /
    • 2013
  • Recently, the prediction and analysis technology of marine environment are actively being studied since the ocean resources in the world is taken notice. The prediction of marine disaster by automatic collecting marine environment data and analyzing the collected data can contribute to minimized the damages with respect to marine pollution of oil spill and fisheries damage by red tide blooms and marine environment upsets. However the studies of the marine environment monitoring and analysis system are limited in South Korea. In this paper, we study the marine disasters prediction system model to analyze collection marine information of out sea and near sea. This paper proposes the models for the marine disasters prediction system as communication system model, a marine environment data monitoring system model, prediction and analyzing system model, and situations propagation system model. The red tide prediction model and summarizing and analyzing model is proposed for prediction and analyzing system model.

Objective Estimation of Velocity Streamfunction Field with Discretely Sampled Oceanic Data 1: with Application of Helmholtz Theorem (객관적 해석을 통한 속도 유선함수(streamfunction) 산출 1: 헬름홀쯔(Helmholtz) 정리의 응용)

  • 조황우
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.323-333
    • /
    • 1997
  • An objective method for the generation of velocity streamfunction is presented for dealing with discretely sampled oceauc data. The method treats a Poisson equation (forced by vorticity) derived from Helmholtz theorem In which streamfunction is obtained by isolating the non-divergent part of the two-dimensional flow field. With a mixed boundary condition and vorticity field estimated from observed field, the method Is Implemented over the Texas-Louisiana show based on the current meter data of the Texas-Louisiana Shelf Circulation and Transport Processes Study (LATEX) measured at 31 moorings for 32 months (April 1992 - November 1994). The resulting streamfunction pattern is quote consistent with observations. The streamfunction field by this method presents an opportunity to initiauze and to verier computer models for local forecasts of enoronmental flow conditions for ell spill, nutrient and plankton transports as well as opportuuty to understand shelf-wlde low-frequency currents.

  • PDF

Effectiveness of Bioremediation on Oil-Contaminated Sand in Intertidal Zone

  • Oh, Young-Sook;Sim, Doo-Suep;Kim, Sang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.437-443
    • /
    • 2003
  • Bioremediation technologies were applied to experimental microcosms, simulating an oil spill in a lower intertidal area. Three treatments (oil only, oil plus nutrients, and oil plus nutrients and microbial inocula) were applied, and each microcosm was repeatedly filled and eluted with seawater every 12 h to simulate tidal cycles. To minimize washing-out of the inoculum by the tidal cycles, microbial cells were primarily immobilized on diatomaceous earth before they were applied to the oiled sand. Oil degradation was monitored by gravimetric measurements, thin layer chromatography/flame ionization detector (TLC/FID) analysis, and gas chromatography (GC) analysis, and the loss of oil content was normalized to sand mass or nor-hopane. When the data were normalized to sand mass, no consistent differences were detected between nutrient-amended and nutrient/inoculum-amended microcosms, although both differed from the oil-only microcosm in respect of oil removal rate by a factor of 4 to 14. However, the data relative to nor-hopane showed a significant treatment difference between the nutrient-amended and nutrient/inoculum-treated microcosms, especially in the early phase of the treatment. The accelerating effect of inoculum treatment has hardly been reported in studies of oil bioremediation in the Tower intertidal area. The inoculum immobilized on diatomaceous earth seemed to be a very effective formulation for retaining microbial cells in association with the sand. Results of this study also suggest that interpretation of the effectiveness of bioremediation could be dependent on the selection of monitoring methods, and consequently the application of various analytical methods in combination could be a solution to overcome the limitations of oil bioremediation monitoring.

A Numerical Model for the Movement of Spilled Oil at Ocean (해상누유 확산의 수치해석)

  • Dong-Y. Lee;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.94-101
    • /
    • 1994
  • This paper describes a short-term prediction model for the movement of an oil slick in shallow waters. Under the assumption that the initial movement of the oil slick is governed by spreading and advection, the model has been developed and applied to Kyungki-Bay near Incheon Harbor. The initial spreading is estimated by using an empirical formula. The depth-averaged momentum equations are solved numerically for the volume transport velocities, in which the $M_2$ tide is the main driving source. A staggered grid system is adopted fur spatial discretization and the half-time method is implemented for time marching. The numerical result is visualized with the help of animation and thus the contaminated area is displayed on a monitor in time sequence. The input data are the time, the location and the volume of spill accident as well as environmental data such as md and $M_2$ tide.

  • PDF

Construction of a Preliminary Conceptual Site Model Based on a Site Investigation Report for Area of Concerns about Groundwater Contamination (지하수 오염우려지역 실태조사 보고서 기반의 사전 부지개념모델 구축)

  • Kim, Juhee;Bae, Min Seo;Kwon, Man Jae;Jo, Ho Young;Lee, Soonjae
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.64-74
    • /
    • 2022
  • The conceptual site model (CSM) is used as a key tool to support decision making in risk based management of contaminated sites. In this work, CSM was applied in Jeonju Industrial Complex where site investigation for groundwater contamination was conducted. Site background information including facility types, physical conditions, contaminants spill history, receptor exposure, and ecological information were collected and cross-checked with tabulated checklist necessary for CSM application. The CSM for contaminants migration utilized DNAPL transport model and narrative CSMs were constructed for source to receptor pathway, ecological exposure route, and contaminants fate and transport in the form of a diagram or flowchart. The component and uncertainty of preliminary CSM were reviewed using the data gap analysis while taking into account the purpose of the survey and the site management stage at the time of the survey. Through this approach, the potential utility of CSM was demonstrated in the site management process, such as assessing site conditions and planning follow-up survey work.

Flood Response Disaster Prevention Facility Simulator Design and Prototype Development Using Spill and Inundation Model (유출·침수모델을 이용한 홍수대응 방재시설 시뮬레이터 설계 및 프로토타입 개발)

  • Seo, Sung Chul;Kim, Ui Hwan;Park, Hyung Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.259-266
    • /
    • 2023
  • Global climate change is increasing, and the damage and scale of localized torrential rains are increasing. Pre-flood analysis simulation results should be derived from rainfall data through rainfall forecasts to prevent flood damage. In addition, it is necessary to control the use and management of flood response disaster prevention facilities through immediate decision-making. However, methods using spills and flood models such as XPSWMM and GATE2018 are limited due to professional usability and complex analytical procedures. Prototype (flood disaster prevention facility simulator) of this study is developed by calculating rainfall (short-term and long-term) using CBD software development methods. It is also expected to construct administrator and user-centric interfaces and provide GIS and visible data (graphs, charts, etc.).

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

Risk based policy at big data era: Case study of privacy invasion (빅 데이터 시대 위험기반의 정책 - 개인정보침해 사례를 중심으로 -)

  • Moon, Hyejung;Cho, Hyun Suk
    • Informatization Policy
    • /
    • v.19 no.4
    • /
    • pp.63-82
    • /
    • 2012
  • The world's best level of ICT(Information, Communication and Technology) infrastructure has experienced the world's worst level of ICT accident in Korea. The number of major accidents of privacy invasion has been three times larger than the total number of Internet user of Korea. The cause of the severe accident was due to big data environment. As a result, big data environment has become an important policy agenda. This paper has conducted analyzing the accident case of data spill to study policy issues for ICT security from a social science perspective focusing on risk. The results from case analysis are as follows. First, ICT risk can be categorized 'severe, strong, intensive and individual'from the level of both probability and impact. Second, strategy of risk management can be designated 'avoid, transfer, mitigate, accept' by understanding their own culture type of relative group such as 'hierarchy, egalitarianism, fatalism and individualism'. Third, personal data has contained characteristics of big data such like 'volume, velocity, variety' for each risk situation. Therefore, government needs to establish a standing organization responsible for ICT risk policy and management in a new big data era. And the policy for ICT risk management needs to balance in considering 'technology, norms, laws, and market'in big data era.

  • PDF

A Study on Prioritization of HNS Management in Korean Waters (해상 위험·유해물질(HNS) 관리 우선순위 선정에 관한 연구)

  • Kim, Young Ryun;Kim, Tae Won;Son, Min Ho;Oh, Sangwoo;Lee, Moonjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.672-678
    • /
    • 2015
  • The types of hazardous and noxious substances (HNS) being transported by sea in Korea are at about 6,000, HNS transport volume accounts for 19% of total tonnage shipped in Korea, and the increase rate of seaborne HNS trade in Korea is 2.5 times higher than the average increase rate of the world seaborne HNS trade. Reflecting this trend, HNS spill incidents have been frequently reported in Korean waters, and there are increasing social demands to develop HNS management technology for the preparedness, response, post-treatment and restoration in relation to HNS spill incidents at sea. In this study, a risk-based HNS prioritization system was developed and an HNS risk database was built with evaluation indices such as sea transport volume, physicochemical properties, toxicities, persistency, and bioaccumulation. Risk scores for human health and marine environments were calculated by multiplying scores for toxicity and exposure. The top-20 substances in the list of HNS were tabulated, and Aniline was ranked first place, but it needs to be managed not by individuals but by HNS groups with similar score levels. Limitations were identified in obtaining data of chronic toxicity and marine ecotoxicity due to lack of testing data. It is necessary to study on marine ecotoxicological test in the near future. Moreover, the priority list of HNS is expected to be utilized in the development of HNS management technology and the relevant technologies, after the expert's review process and making up for the lack of test data in the current research results.