Journal of the Korean Data and Information Science Society
/
제19권3호
/
pp.819-830
/
2008
Web recommender system was suggested in order to solve the problem which is cause by overflow of information. Collaborative filtering is the technique which predicts and recommends the suitable goods to the user with collection of preference information based on the history which user was interested in. However, there is a difficulty of recommendation by lack of information of goods which have less popularity. In this paper, it has been researched the way to select the sparsity of goods and the preference in order to solve the problem of recommender system's sparsity which is occurred by lack of information, as well as it has been described the solution which develops the quality of recommender system by selection of customers who were interested in.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권6호
/
pp.2310-2332
/
2020
In recent years, deep learning techniques have achieved tremendous successes in natural language processing, speech recognition and image processing. Collaborative filtering(CF) recommendation is one of widely used methods and has significant effects in implementing the new recommendation function, but it also has limitations in dealing with the problem of poor scalability, cold start and data sparsity, etc. Combining the traditional recommendation algorithm with the deep learning model has brought great opportunity for the construction of a new recommender system. In this paper, we propose a novel collaborative recommendation model based on auxiliary stacked denoising autoencoder(ASDAE), the model learns effective the preferences of users from auxiliary information. Firstly, we integrate auxiliary information with rating information. Then, we design a stacked denoising autoencoder based collaborative recommendation model to learn the preferences of users from auxiliary information and rating information. Finally, we conduct comprehensive experiments on three real datasets to compare our proposed model with state-of-the-art methods. Experimental results demonstrate that our proposed model is superior to other recommendation methods.
Journal of information and communication convergence engineering
/
제17권2호
/
pp.135-141
/
2019
Collaborative filtering algorithms often encounter data sparsity issues. To overcome this issue, auxiliary information of relevant items is analyzed and an item attribute matrix is derived. In this study, we combine the user-item attribute preference with the traditional similarity calculation method to develop an improved similarity calculation approach and use weights to control the importance of these two elements. A collaborative filtering algorithm based on user-item attribute preference is proposed. The experimental results show that the performance of the recommender system is the most optimal when the weight of traditional similarity is equal to that of user-item attribute preference similarity. Although the rating-matrix is sparse, better recommendation results can be obtained by adding a suitable proportion of user-item attribute preference similarity. Moreover, the mean absolute error of the proposed approach is less than that of two traditional collaborative filtering algorithms.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권5호
/
pp.1260-1272
/
2024
This paper tackles the prevalent challenges faced by existing tourism route recommendation methods, including data sparsity, cold start, and low accuracy. To address these issues, a novel intelligent tourism route recommendation method based on collaborative filtering is introduced. The proposed method incorporates a series of key steps. Firstly, it calculates the interest level of users by analyzing the item attribute rating values. By leveraging this information, the method can effectively capture the preferences and interests of users. Additionally, a user attribute rating matrix is constructed by extracting implicit user behavior preferences, providing a comprehensive understanding of user preferences. Recognizing that user interests can evolve over time, a weight function is introduced to account for the possibility of interest shifting during product use. This weight function enhances the accuracy of recommendations by adapting to the changing preferences of users, improving the overall quality of the suggested tourism routes. The results demonstrate the significant advantages of the approach. Specifically, the proposed method successfully alleviates the problem of data sparsity, enhances neighbor selection, and generates tourism route recommendations that exhibit higher accuracy compared to existing methods.
추천 시스템이란 사용자가 좋아할만한 개인화된 상품을 사용자에게 제안하는 것이다. 최근 상품 수의 증가로 추천 시스템의 중요성이 날로 커지고 있지만, 데이터 희소성 문제는 여전히 추천 시스템의 대표적인 문제로 남아있다. 데이터 희소성 문제는 사용자가 전체 상품 중 일부의 상품에만 평점을 부여하여, 사용자와 상품 관계를 정확히 이해하기 힘든 것을 말한다. 이를 해결하기 위해 가장 여러 가지 접근법이 있는 그 중 대표적인 것인 데이터 임퓨테이션이다. 데이터 임퓨테이션은 사용자가 평가하지 않은 상품의 평점을 추론해 평점 행렬에 채우는 방법이다. 하지만 기존 데이터 임퓨테이션 방법은 사용자가 평가하지 않은 상품에 대한 몇 가지 특성을 놓치고 있다. 본 논문에서는 기존 방법의 한계점을 정의하고, 이를 개선하는 방안 3가지를 제안한다.
최근 추천 시스템은 패션, 동영상, 음악 등을 중심으로 맞춤형 추천 서비스가 제공되어 사용자들의 관심을 모으고 있다. 그러나 이러한 서비스들은 실시간으로 발생하는 상황 정보를 사용하지 않아 여러 상황에 따른 적합한 서비스를 사용자에게 제공하기가 어렵다. 또한 적용되는 상황 정보가 차원을 확장시킬 경우, 데이터 희소성(Data Sparsity)을 증가시켜 사용자들에게 적합한 음악들을 추천할 수 없는 문제가 발생한다. 본 연구에서는 이러한 문제점을 해소시키기 위해 연관규칙(Association Rules)을 적용하여 사용자의 현재 위치 정보와 시간 정보에 대한 관계성 및 규칙들을 이용하여 실시간 상황에서 적합한 음악을 추천하는 시스템을 제안하였다. 수집된 상황 정보를 바탕으로 5-fold Cross Validation을 진행하여 위치와 시간 정보에 따른 추천 시스템의 정확도를 측정하였다. 그 결과 상황 정보가 누적됨에 따라 추천 시스템의 정확도가 향상되는 것을 확인할 수 있었다.
메모리 기반의 협력 필터링은 추천 시스템의 대표적인 타입이지만 데이터 희소성이라는 본질적인 문제를 갖고 있다. 이 문제를 해결하기 위해 많은 연구 업적들이 이루어졌으나, 보다 체계적인 접근 방법은 여전히 요구된다. 본 연구는 사용자 간의 유사도를 산출하기 위하여 항목들에 대한 사용자 평가치 분포를 활용한다. 따라서 제안 방법은 사용자의 모든 평가치를 이용하므로, 공통 항목에 대한 평가치만을 이용하는 기존 방법들과 대비된다. 더욱이, 각 항목에 대한 다른 사용자들의 평가치들을 유사도 계산에 반영함으로써 항목 평가치의 광역적인 관점을 취한다. 제안 방법의 성능은 실험을 통하여 평가하였고, 연관된 다른 방법들과 비교하였다. 그 결과, 제안 방법은 예측과 순위 정확도 측면에서 우수한 성능을 보였다. 이러한 예측 정확도의 향상은 전통적인 유사도 척도에 비해 최근의 방법으로 달성한 것보다 최고 2.6배 더 높다.
영화 추천 문제에 대한 해법으로 사용자 기반 추천 방법과 항목 기반 추천 방법이 연구되어왔다. 그러나 이들은 각각 희박성의 문제와 사용자의 선호도를 반영하지 못한다는 문제를 안고 있다. 이러한 문제들을 해결하기 위해서 유사도의 개념을 이용해 두 가지 방법을 조합하는 연구가 있으나 계산해야 할 파라메타 수가 많아 현실적으로 희박성의 문제에서 자유롭지 못하다. 본 연구에서는 이러한 문제를 보완하기 위하여 항목 간 선호도 차이를 이용한 추천 방법을 제안한다. 이 방법은 계산해야 할 파라메타 수가 적어 희박성의 문제에서 비교적 자유롭다. 또한 파라메타 계산에 사용자들이 평가한 선호도를 반영함으로써 보다 정확한 결과를 얻을 수 있다. 실험 결과 제안된 방법은 초기에는 오류가 크지만 빠르게 성능이 안정화되는 것을 보여준다. 또한 유사도를 이용한 기존의 추천 방법과 비교하여 평균 오류를 0.0538 낮추는 결과를 보였다.
소비자의 욕구와 관심에 맞추어 개인화된 제품을 추천하는 추천 시스템은 비즈니스에 필수적인 기술로서의 그 중요성이 증가하고 있다. 추천 시스템의 대표적인 모형 중 협업 필터링은 우수한 성능으로 다양한 분야에서 활용되고 있다. 그러나 협업필터링은 사용자-아이템의 선호도 정보가 충분하지 않을 경우 성능이 저하되는 희소성의 문제가 있다. 또한 실제 평점 데이터의 경우 대부분 높은 점수에 데이터가 편향되어 있어 심한 불균형을 갖는다. 불균형 데이터에 협업 필터링을 적용할 경우 편향된 클래스에 과도하게 학습되어 추천 성능이 저하된다. 이러한 문제를 해결하기 위해 많은 선행연구들이 진행되어 왔지만 추가적인 외부 데이터 또는 기존의 전통적인 오버샘플링 기법에 의존한 추천을 시도하였기에 유용성이 떨어지고 추천 성능 측면에서 한계점이 있었다. 본 연구에서는 CGAN을 기반으로 협업 필터링 구현 시 발생하는 희소성 문제를 해결함과 동시에 실제 데이터에서 발생하는 데이터 불균형을 완화하여 추천의 성능을 높이는 것을 목표로 한다. CGAN을 이용하여 비어있는 사용자-아이템 매트릭스에 실제와 흡사한 가상의 데이터를 생성하여, 희소성을 가지고 있는 기존의 매트릭스로만 학습한 것과 비교했을 때 높은 정확도가 예상된다. 이 과정에서 Condition vector y를 이용하여 소수 클래스에 대한 분포를 파악하고 그 특징을 반영하여 데이터를 생성하였다. 이후 협업 필터링을 적용하고, 하이퍼파라미터 튜닝을 통해 추천 시스템의 성능을 최대화하는데 기여하였다. 비교 대상으로는 전통적인 오버샘플링 기법인 SMOTE, BorderlineSMOTE, SVM-SMOTE, ADASYN와 GAN을 사용하였다. 결과적으로 데이터 희소성을 가지고 있는 기존의 실제 데이터뿐만 아니라 기존 오버샘플링 기법들보다 제안 모형의 추천 성능이 우수함을 확인하였으며, RMSE, MAE 평가 척도에서 가장 높은 예측 정확도를 나타낸다는 사실을 증명하였다.
협력 필털링은 그 유용성으로 인해 현재 학문적으로나 상업적으로 널리 사용되고 있지만 확장성 문제, 평가 데이타의 희박성 문제, 초기 평가 문제 둥을 안고 있다. 본 논문에서는 이러한 문제들을 일부 해결하기 위해 에이전트 간 협력에 기초한 분산 협력필터링 방법을 제안하였다. 제안 방법에서는 사용자의 평가정보를 에이전트가 지역 데이타베이스에 보관하고 이 정보를 친구들에게만 전파하는 방법을 사용함으로써 사용자 증가에 따른 확장성 문제를 해결하고자 하였다. 그리고 평가 데이타 부족에 따른 추천질 저하를 줄이기 위해 친구 에이전트의 의견을 반영하는 방법을 사용하였고 새로운 사용자에 대해서도 추천이 가능토록 하기 위해 사용자 프로파일을 이용한 협력필터링 방법을 사용하였다. 실험결과, 본 제안 방법이 확장성뿐만 아니라 데이타 희박성 문제 및 새로운 사용자 문제에도 도움이 됨을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.