Collaborative filtering is one of the most common methods that e-commerce sites and Internet information services use to personalize recommendations. Collaborative filtering has the advantage of being able to use even sparse evaluation data to predict preference scores for new products. To date, however, no in-depth investigation has been conducted on how the data sparsity effect in customers' evaluation data affects collaborative filtering-based recommendation performance. In this study, we analyzed the sparsity effect and used a hybrid method based on customers' evaluations and purchases collected from an online bookstore. Results indicated that recommendation performance decreased monotonically as sparsity increased, and that performance was more sensitive to sparsity in evaluation data rather than in purchase data. Results also indicated that the hybrid use of two different types of data (customers' evaluations and purchases) helped to improve the recommendation performance when evaluation data were highly sparse.
Collaborative filtering is one of popular techniques for personalized recommendation in e-commerce sites. An advantage of collaborative filtering is that the technique can work with sparse evaluation data to predict preference scores of new alternative contents or advertisements. There is, however, no in-depth study about the sparsity effect of customer's evaluation data to the performance of recommendation. In this study, we investigate the sparsity effect and hybrid usages of customers' evaluation data and purchase data using an experiment result. The result of the analysis shows that the performance of recommendation decreases monotonically as the sparsity increases, and also the hybrid usage of two different types of data; customers' evaluation data and purchase data helps to increase the performance of recommendation in sparsity situation.
협력적 필터링을 이용한 추천시스템은 희소성의 문제로 인해 예측의 정확도에 대한 신뢰성에 문제가 있다. 이는 선호도 평가치의 희소성이 크면 이웃선정과정에 문제가 있을 뿐만 아니라 예측의 정확도를 떨어뜨린다. 본 논문에서는 사용자의 응답 희소성에 따른 MAE의 변화를 조사하였으며 희소성에 따라 집단을 분류하고 분류된 집단에 따른 MAE는 유의적인 차이가 있는 지를 분석하였다. 그리고 희소성 문제로 인한 집단 간의 예측 정확도를 높이기 위한 방법으로 희소성이 있는 아이템을 선별하여 이들 중에서 선호도 응답이 많은 사용자 고객의 선호도 평균값을 선호도 평가 치로 대치시켜 희소성을 완화하여 추천시스템의 예측 정확도가 높아졌음을 연구하였다.
Sparse unmixing has been proven to be an effective method for hyperspectral unmixing. Hyperspectral images contain rich spectral and spatial information. The means to make full use of spectral information, spatial information, and enhanced sparsity constraints are the main research directions to improve the accuracy of sparse unmixing. However, many algorithms only focus on one or two of these factors, because it is difficult to construct an unmixing model that considers all three factors. To address this issue, a novel algorithm called multiview-based spectral weighted and low-rank row-sparsity unmixing is proposed. A multiview data set is generated through spectral partitioning, and then spectral weighting is imposed on it to exploit the abundant spectral information. The row-sparsity approach, which controls the sparsity by the l2,0 norm, outperforms the single-sparsity approach in many scenarios. Many algorithms use convex relaxation methods to solve the l2,0 norm to avoid the NP-hard problem, but this will reduce sparsity and unmixing accuracy. In this paper, a row-hard-threshold function is introduced to solve the l2,0 norm directly, which guarantees the sparsity of the results. The high spatial correlation of hyperspectral images is associated with low column rank; therefore, the low-rank constraint is adopted to utilize spatial information. Experiments with simulated and real data prove that the proposed algorithm can obtain better unmixing results.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권1호
/
pp.58-78
/
2016
Compressed sensing (CS) possesses the potential benefits for spectrum sensing of wideband signal in cognitive radio. The sparsity of signal in frequency domain denotes the number of occupied channels for spectrum sensing. This paper presents a scheme of adaptively adjusting the number of compressed measurements to reduce the unnecessary computational complexity when priori information about the sparsity of signal cannot be acquired. Firstly, a method of sparsity estimation is introduced because the sparsity of signal is not available in some cognitive radio environments, and the relationship between the amount of used data and estimation accuracy is discussed. Then the SNR of the compressed signal is derived in the closed form. Based on the SNR of the compressed signal and estimated sparsity, an adaptive algorithm of adjusting the number of compressed measurements is proposed. Finally, some simulations are performed, and the results illustrate that the simulations agree with theoretical analysis, which prove the effectiveness of the proposed adaptive adjusting of compressed measurements.
본 논문에서는 협업 필터링의 선호도 예측 정확성의 저하를 초래하는 전통적 문제점 중 하나인 데이터 희소성 문제에 강인한 잠재적 속성 선호도 기반 협업 필터링 방법(Latent Attribute Rating-based Collaborative Filtering, LAR_CF)을 제안한다. 기존의 협업 필터링은 객체의 유사성을 판단하기 위한 특징벡터로써 사용자가 명시적으로 평가한 선호도만을 이용하며, 해당 문제 개선을 위해 속성을 사용하는 연구들은 범용적으로 사용하기 어려웠다. 이웃 기반 필터링에 근본을 두는 LAR_CF는 기존의 명시적 선호도와 함께 유사도 평가의 대상이 되는 두 객체의 고유한 속성을 특징벡터로 삼기 때문에 명시적 선호도의 수가 적어서 발생하는 데이터 희소성 문제를 개선하여 선호도 예측 정확도를 향상시키며, 속성의 종류에 구애받지 않고 손쉽게 적용할 수 있는 장점을 가진다. LAR_CF의 유효성 평가를 위해서 MovieLens 100k 데이터세트 및 해당 데이터세트에 사용된 속성정보를 활용하여 일반적 성능 실험과 인공적 데이터 희소성 실험에서 선호도 예측 정확도를 평가한 결과, 제안하는 방법이 데이터 희소 조건에서 선호도 예측 정확도를 향상시킬 수 있음을 확인하였다.
최근 추천 시스템들은 고차원 데이터를 사용할 수 있는 시스템으로 발전하고 있다. 그러나 고차원 데이터는 차원을 확장시켜 알고리즘 복잡도가 증가하여 추천 항목의 정확도를 저하시킬 수 있다. 또한 데이터의 희소성(Sparsity) 문제가 발생할 수 있어 사용자들에게 적합한 추천 항목을 제공하는 것이 어렵다. 본 연구에서는 Fuzzy-AHP를 이용하여 사용자들의 주관적 기준의 데이터를 객관적 기준으로 분류한 후, 퍼지 연관규칙 분석을 이용하여 반복적 패턴을 띄는 규칙들을 활용하는 알고리즘을 제안하였다. 본 연구에서 적용된 알고리즘이 고차원 데이터의 문제점들을 어떻게 완화하는지 확인하기 위해 사용자 수의 변화에 따른 5-fold Cross Validation을 진행하였다. 그 결과 본 알고리즘이 적용된 시스템의 정확도는 Fuzzy-AHP만을 적용한 시스템보다 12.5% 정도 정확도가 우수하였고, 데이터의 희소성 문제도 완화할 수 있다는 것을 확인하였다.
Suppose one is trying to estimate a high dimensional vector of parameters from a series of one observation per parameter. Often, it is possible to take advantage of sparsity in the parameters by thresholding the data in an appropriate way. A marginal maximum likelihood approach, within a suitable Bayesian structure, has excellent properties. For very sparse signals, the procedure chooses a large threshold and takes advantage of the sparsity, while for signals where there are many non-zero values, the method does not perform excessive smoothing. The scope of the method is reviewed and demonstrated, and various theoretical, practical and computational issues are discussed, in particularly exploring the wide potential and applicability of the general approach, and the way it can be used within more complex thresholding problems such as curve estimation using wavelets.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권8호
/
pp.3086-3101
/
2021
To supply precise marketing and differentiated service for the electric power service department, it is very important to predict the customers with high sensitivity of electric power failure. To solve this problem, we propose a novel grouped 𝑙1/2 sparsity constrained logistic regression method for sensitivity assessment of electric power failure. Different from the 𝑙1 norm and k-support norm, the proposed grouped 𝑙1/2 sparsity constrained logistic regression method simultaneously imposes the inter-class information and tighter approximation to the nonconvex 𝑙0 sparsity to exploit multiple correlated attributions for prediction. Firstly, the attributes or factors for predicting the customer sensitivity of power failure are selected from customer sheets, such as customer information, electric consuming information, electrical bill, 95598 work sheet, power failure events, etc. Secondly, all these samples with attributes are clustered into several categories, and samples in the same category are assumed to be sharing similar properties. Then, 𝑙1/2 norm constrained logistic regression model is built to predict the customer's sensitivity of power failure. Alternating direction of multipliers (ADMM) algorithm is finally employed to solve the problem by splitting it into several sub-problems effectively. Experimental results on power electrical dataset with about one million customer data from a province validate that the proposed method has a good prediction accuracy.
빅 데이터에서 텍스트 마이닝은 많은 수의 데이터로부터 많은 특징 추출하기 때문에, 클러스터링 및 분류 과정의 계산 복잡도가 높고 분석결과의 신뢰성이 낮아질 수 있다. 특히 텍스트마이닝 과정을 통해 얻는 Term document matrix는 term과 문서간의 특징들을 표현하고 있지만, 희소행렬 형태를 보이게 된다. 본 논문에서는 탐지모델을 위해 텍스트마이닝에서 개선된 GA(Genetic Algorithm)을 이용한 특징 추출 방법을 설계하였다. TF-IDF는 특징 추출에서 문서와 용어간의 관계를 반영하는데 사용된다. 반복과정을 통해 사전에 미리 결정된 만큼의 특징을 선택한다. 또한 탐지모델의 성능 향상을 위해 sparsity score(희소성 점수)를 사용하였다. 스팸메일 세트의 희소성이 높으면 탐지모델의 성능이 낮아져 최적화된 탐지 모델을 찾기가 어렵다. 우리는 fitness function에서 s(F)를 사용하여 희소성이 낮고 TF-IDF 점수가 높은 탐지모델을 찾았다. 또한 제안된 알고리즘을 텍스트 분류 실험에 적용하여 성능을 검증하였다. 결과적으로, 제안한 알고리즘은 공격 메일 분류에서 좋은 성능(속도와 정확도)을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.