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EMPIRICAL BAYES THRESHOLDING: ADAPTING TO
SPARSITY WHEN IT ADVANTAGEOUS TO DO SO

BERNARD W. SILVERMAN!

ABSTRACT

Suppose one is trying to estimate a high dimensional vector of parameters
from a series of one observation per parameter. Often, it is possible to
take advantage of sparsity in the parameters by thresholding the data in
an appropriate way. A marginal maximum likelihood approach, within a
suitable Bayesian structure, has excellent properties. For very sparse signals,
the procedure chooses a large threshold and takes advantage of the sparsity,
while for signals where there are many non-zero values, the method does
not perform excessive smoothing. The scope of the method is reviewed and
demonstrated, and various theoretical, practical and computational issues
are discussed, in particularly exploring the wide potential and applicability
of the general approach, and the way it can be used within more complex
thresholding problems such as curve estimation using wavelets.
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1. INTRODUCTION

1.1. Background

There are many statistical problems where the object of interest is a sequence
of parameters u; on each of which we have a single observation X; subject to
noise, so that

Xi = pi + €, (1.1)

where the ¢; are N(0,1) random variables.
Problems of this kind arise, for example, in astronomical and other image pro-
cessing contexts, in data mining, in model selection, and in function estimation
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using wavelets and other dictionaries. In many practical contexts, the sequence
i; may be sparse, in some sense, and it is important to take advantage of this
aspect if possible. This paper reviews a body of joint work with Iain Johnstone on
this general topic. For further reading, see the papers Johnstone and Silverman
(2004a,b,2005a,b), from which most of the material of this paper is drawn, often
verbatim. The EbayesThresh package (Silverman, 2005) provides an implemen-
tation in R of the methods discussed, and throughout this paper we shall refer to
our approach as the EbayesThresh approach. A MATLAB translation has been
provided in Antoniadis et al. (2004).

A natural approach that can make use of sparsity is thresholding: if the ab-
solute value of a particular X; exceeds some threshold ¢ then it is taken to cor-
respond to a a nonzero u; which is then estimated, most simply by X; itself. If
| Xi| < t then the coefficient |y;] is estimated to be zero. The quality of estimation
is sensitive to the choice of threshold, with the best choice being dependent on
the problem setting. In general terms, “sparse” signals call for relatively high
thresholds (3, 4, or even higher) while “dense” signals might demand choices of
2 or even lower.

In essence, the EbayesThresh approach is a thresholding method with a
threshold estimated from the data. Both theoretical and practical considera-
tions show that the approach has excellent adaptivity properties, in particular by
adjusting stably to the sparsity or otherwise of the underlying signal, by choosing
an appropriate threshold from the data. ’

1.2. Examples

Before explaining the method in detail, we consider two examples that give a
feeling for the way that the method works in practice.

The first example is of data with a relatively sparse mean vector of length
1000, with 25 nonzero entries uniformly distributed on (—7,7). To this mean
vector is added a sequence of independent normally distributed noise errors with
variance 1. The resulting data are plotted in the left panel of Figure 1.1. The
EbayesThresh estimate of the mean vector is given in the right panel for com-
parison. It can be seen that relatively stringent thresholding has been applied to
the data; the numerical value of the threshold chosen by the procedure turns out
to be 2.99, in the sense that any data point within 2.99 standard deviations of
zero is presumed to be pure noise.

The corresponding procedure was carried out for a data set constructed in
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FIGURE 1.1 Simulated data and estimate for sparse example. Only 25 of the 1000 underlying
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FIGURE 1.2 Simulated data and estimate for dense example. In this case 250 of the 1000

underlying parameters p; are nonzero.
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FI1GURE 1.3 Comparison of the performance of the estimation for the sparse and dense examples.
In each figure, the absolute value of the estimates is plotied against the absolute value of the
corresponding parameters. In the left panel, there are 971 parameters correctly estimated to be
zero, 4 zero parameters estimated to be nonzero, and 9 nonzero parameters estimated to be zero.
The corresponding quantities for the dense signal considered in the right panel are 661, 89 and
51.

exactly the same way containing 250 nonzero mean values, a much denser signal.
This time the numerical value of the threshold was only 1.67, and so it was much
easier for an observation with zero mean to be considered as containing some
signal. The results are shown in Figure 1.2. Further insight into the comparison
of these examples is given in Figure 1.3. For the sparse signal, the high threshold
has the effect that all but 4 of the 975 zero parameters are estimated to be zero.
The other 971 are estimated perfectly. However 9 of the 25 nonzero parameters
are estimated to zero, thereby presumably incurring slightly more error than if
they were not thresholded. In the case of the dense signal, a far higher proportion
of the zero parameters, 89 out of 750, are estimated to be nonzero, but the
proportion of nonzero parameters incorrectly classified as zeroes is lower: 51 out
of 250. The way in which the empirical Bayes method automatically adjusts this
tradeoft will be discussed more systematically in Section 3.1 below.

1.3. Brief overview of the method

Very briefly, the main aspects of our method are as follows; they will be
discussed further in Section 2.
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e A Bayesian model is used for the parameters y;. Under this model, each
w; is zero with probability (1 — w), while, with probability w, u; is drawn
from a symmetric heavy-tailed density ~.

e The mixing weight w is the key parameter in the prior. It is chosen auto-
matically from the data, using a marginal maximum likelihood approach,
and then substituted back into the Bayesian model.

¢ Estimation within the Bayesian model is a thresholding procedure, and the
choice of w is equivalent to a choice of threshold ¢(w). The method uses
this data-based threshold in estimating the underlying vector of parameters
from the data.

Within the EbayesThresh package, the master routine ebayesthresh takes a

vector x and returns an estimate of the parameter values p;, by simply carrying
out

> mu <- ebayesthresh(x)

The fuller syntax of the routine is

> ebayesthresh(x, prior = "laplace”, a = 0.5, bayesfac = FALSE,
+ sdev = NA, verbose = FALSE, threshrule = "median")

and reviewing the optional arguments gives an overview of some of the topics
discussed in more detail below. Further details are given in the help file for the
routine.

The argument prior specifies the density v(u), the default choice for which
is a double exponential, or Laplace, density (1/2)a exp(—a|u|). The parameter
a is given by the argument a. In Section 2.1, this choice of prior is discussed
further, together with an alternative possibility.

The arguments bayesfac and threshrule determine the exact way in which
the data are processed once the threshold has estimated. For most practical
purposes their default values can be used, but details of other possible approaches
are given in Sections 2.2,

The argument sdev gives the standard deviation of the noise X; — p; in the
data; the default is for this to be estimated from the observed data, from the
median absolute value of the X;. The motivation for this is that even if the
sequence j; is only reasonably sparse, the median absolute value will not be
affected by those observations that have nonzero means p;. Clearly some care
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may be needed, if there is a possibility that the signal is very far from sparse. If
a numerical value of the standard deviation is known, or is estimated by other
means, then it can be supplied as the value of sdev.

Finally, the argument verbose, if set to TRUE, causes the routine to produce
a list containing a number of different aspects of the thresholding, such as the
numerical value of the threshold used, the estimated standard deviation, and so
on. This is most useful for research purposes rather than for the actual processing
of data.

2. DESCRIPTION OF THE METHOD

In this section, we describe and explain the various aspects of the method.
Full details of the various algorithms and calculations required are set out in
Johnstone and Silverman (2005a).

2.1. The Bayesian model

In this discussion, we assume throughout that the observations X; ~ N(u;,1).
If the observations have variance equal to o2 rather than 1, then we renormalize
the data by dividing by o, and then multiply the resulting estimates of the means
by o.

Within a Bayesian context, the notion of sparsity is naturally modeled by
a suitable prior distribution for the parameters u;. We model the y; as having
independent prior distributions each given by the mixture

Sorior (1) = (1 — w)do(p) + wy(p)- (2.1)

The nonzero part of the prior, -, is assumed to be a fixed unimodal symmetric
density.

We concentrate on two particular possibilities for the function 7y, both of
which allow for the necessary calculations to be tractable. Further details of the
all the calculations needed for the implementation of the EbayesThresh approach
are given in Johnstone and Silverman (2005a).

The Laplace density with scale parameter a > 0

Ya(u) = jaexp(—alul)

can be used. In the author’s experience, a good value for the parameter a is 0.5,
and this is the default value in the EbayesThresh package.
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Another possibility for v(u) is specified by the mixture
uO =0~ N(0,67" — 1) with © ~ Beta(3,1). (2.2)

This yields the density

v(w) = (2m) 71— |ul@(Ju])/é(w)}, (2:3)

which has tails that decay as © =2, the same weight as those of the Cauchy distri-
bution. We refer to the density (2.3) as the quasi-Cauchy density. Some further
discussion is provided in Section 2.3 of Johnstone and Silverman (2004a). The
density is one of a family whose tails decay at polynomial rates; the main mo-
tivation for the quasi-Cauchy is its combination of heavy tails with reasonable
tractability in the present context. It is the heaviest tailed density satisfying the
theoretical assumptions made in Johnstone and Silverman (2004a).

2.2. Thresholding rules

Suppose p has the prior distribution (2.1) and X ~ N(u,1). We can now
find the posterior distribution of u conditional on X = z; see Johnstone and
Silverman (2005a) for algorithmic details. Define fi(z;w) to be the median of
this posterior distribution; for any fixed w, the estimation rule ji(z;w) will be a
monotonic function of x with the thresholding property that there exists ¢(w) > 0
such that ji(z;w) = 0 if and only if |z| < t(w). A plot of the posterior median
function for a particular value of w is given in Figure 2.1. It is clear that this
function is a thresholding rule and that for a range of data values the estimate is
exactly zero.

Given a sequence of observations, we can apply the Bayesian procedure sepa-
rately to each observation X; to yield an estimate of the corresponding parameter
;- The posterior median i(X;;w) can be used as this estimate. This is an exact
Bayesian procedure if the X; are independent; if the X; are not exactly indepen-
dent then there is some loss of information in the estimation procedure, but if
there is not too much dependence then the method will give at least reasonable
results.

The posterior median is not the only possible estimation rule once w has been
specified; for example one could use the posterior mean fi(z;w) of p given X = «z,
but this will not be an exact thresholding rule.

There are other possibilities, for example to determine the threshold ¢(w)
associated with the posterior median with weight w, but then to carry out the
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FIGURE 2.1 Posterior median thresholding function, for quasi-Cauchy prior with mizing weight
0.02.

actual estimation by hard or soft thresholding with threshold t(w). Another
alternative to the posterior median threshold is the Bayes factor threshold, defined
as the value 7,(w) > 0 such that

P(u # 0|X = 7(w)) = 0.5.

2.3. Choosing the threshold

The key aspect of the empirical Bayes approach is the choice of mixing weight
w, or equivalently of threshold #(w). Assume the X; are independent; we then
estimate w by a marginal maximum likelihood approach. Let g = v * ¢, where %
denotes convolution.

The marginal density of the observations X; will then be

(1 —w)d(z) +wg.

We define the marginal maximum likelihood estimator 1w of w to be the maximizer
of the marginal log likelihood

w) =) log{(1 — w)p(X:) + wg(Xi)}, (2.4)
i=1

subject to the constraint on w that the threshold satisfies t(w) < /2logn. For
our priors, the derivative #'(w) is a monotonic function of w, so its root is very
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easily found numerically, since the function g is tractable in each case. The bound
v2logn on the threshold is the so-called universal threshold for a sample of size
n. As explained by Donoho and Johnstone (1994b, p. 445), it is, asymptotically,
the maximum absolute value of a sequence of n independent N(0,1) random
variables. If the universal threshold is used, then with high probability every
zero signal value will be estimated correctly. Therefore, in simple terms, if we
wish to take advantage of the possible economy of a signal by thresholding, there
is no need to consider thresholds any larger than the universal threshold.

Having used the data once to obtain the estimate @ by marginal maximum
likelihood, we then plug the value w back into the prior and then estimate the
parameters u; by a Bayesian procedure using this value of w, for example as the
posterior median fi(X;;w). In our implementation the cost of both parts of the
procedure is linear in the number of observations considered.

Other parameters of the prior can also be estimated by marginal maximum
likelihood. In particular, if the Laplace prior is used, then the scale parameter a
can be estimated as follows. Define g, to be the convolution of a7y(a-) with the

normal density. Then estimate both o and w by finding the maximum over both
parameters of

Lw,a) = log{(1— w)p(X;) + wga(X:)}-
=1

2.4. Wavelet thresholding and other extensions

Though the basic approach is much more widely applicable, our original moti-
vation for embarking on this work was function estimation using wavelets. In the
wavelet context, it is typical that the wavelet coefficients of a true signal will be
sparse at the fine resolution scales, and dense at the coarser scales. It is therefore
desirable to develop threshold selection methods that adapt the threshold level
by level, and so our approach in the wavelet case is to apply the Empirical Bayes
method separately to each level of the transform. A full discussion is given in
Section 4. A detailed treatment of the approach, including both theoretical and
practical aspects, is given in Johnstone and Silverman (2005b).

Another possible extension is to allow the threshold to increase as ¢ increases,
reflecting the notion that early p; have a reasonably large probability of being
nonzero, but that as one proceeds along the sequence nonzero u; becomes rarer.
For example, u; may be the coefficients of a function in a dictionary where the
early terms in the sequence describe large-scale aspects of the function or phe-
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nomenon of interest, while as we proceed further along the sequence, the terms
describe finer and finer detail. For example, Jansen et al. (2004) construct just
such a basis for the analysis of data observed on an irregular set of points in two
dimensions. (Discrete wavelet transforms have something of this character, but
are ordered in blocks rather than in a single order.)

Within this general paradigm, we model p; as having prior distributions of
the same form as previously, but with weight w; depending on i, so that u; has
prior density

(1 — wi)d(u) + wiy(u),

where § is a Dirac delta function at zero. If we assume only that the weights
w; decrease as ¢ increases, then we can, in principle, estimate the weights by
marginal maximum likelihood. The estimating sequence w; will be chosen to
maximize the log marginal likelihood

L wi,...,wy) = Zlog{(l — w;)P(x;) +wig(xi) }, (2.5)
i=1
subject to the constraint w; > we > --- > w,. Once the weights have been

estimated, we estimate each p; separately, using a thresholding rule based on the
Bayesian model with mixing parameter w;.

It is also possible to allow the prior mixing weight to vary in a more con-
strained way, but still typically to decrease as i increases, but by constraining it
to be proportional to some prescribed sequence ¢;, subject to the constraint that
it remains bounded between some reasonable lower limit and 1.

Full details of algorithms to implement these approaches, and examples of
their use, are provided in Johnstone and Silverman (2005a).

3. EXAMPLES AND FURTHER ASPECTS OF THE PACKAGE

In this section, we first consider in detail an example from Johnstone and Sil-
verman (2004a), and then go on to explore some other aspects of the methodology
and of the EbayesThresh package.

3.1. Finding a threshold for a simulated signal of given sparsity

In Johnstone and Silverman (2004a) a number of artificial images of varying
degrees of sparseness are considered. These are shown in Figure 3.1, and the
result of adding noise to these images is shown in Figure 3.2.
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FIGURE 3.1 Absolute value of parameter images of various sparsity. Out of 10000 pizels, the
number of nonzero parameters is, from left to right: 5, 20, 100 in the top row and 500, 2000,

10000 in the bottom row. Each nonzero parameter is chosen independently from a uniform
distribution on (—5,5).

The average square estimation error yielded by thresholding X; with varying
thresholds is plotted in Figure 3.3. The number in the top right of each panel
is the value of the number of nonzero parameters, m, so m = 5 corresponds to
a very sparse model, while m = 10000 corresponds to a very dense model, with
no zero parameter values at all. The naive estimator, estimating each p; by the
corresponding X; without performing any thresholding at all, will produce an
expected mean square error of 1. The scales in each panel are the same, and
the threshold range is from 0 to /2 log 10000 = 4.292, the so-called universal
threshold for a sample of this size. The arrow shows the threshold chosen by the
EbayesThresh approach.

From this figure we can draw the following conclusions:

¢ The potential gain from thresholding is very large if the true parameter
space is sparse. For the sparsest signals considered in Figures 3.1 and 3.3,

the minimum average square error achieved by a thresholding estimate is
0.01 or even less.
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FIGURE 3.2 Absolute values of data X, result of adding Gaussian white noise to the images
depicted in Figure 8.1.

e The appropriate threshold increases as the signal becomes more sparse. For
the fully dense signal, no thresholding at all is appropriate, while for the
sparsest signals, the best results are obtained using the universal threshold.

o It is important for the threshold to be tuned to the sparsity of the signal; if
a threshold appropriate for dense signals is used on a sparse signal, or vice
versa, the results are disastrous.

e The EbayesThresh method does an excellent job of tracking the best pos-
sible threshold over the whole range from very sparse to completely dense.

4. WAVELET THRESHOLDING

In this section, we go beyond estimation of a single vector or sequence of
parameters. We consider the application of the approach to wavelet thresholding,
as investigated in Johnstone and Silverman (2005b).
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FIGURE 3.3 Mean square error of thresholding data obtained from the images in Figure 3.1 by
adding Gaussian white noise. In each panel, the arrow indicates the threshold chosen by the
empirical Bayes approach. The prior used for the nonzero part of the distribution was a Laplace
distribution with scale parameter a = 1/2. Each plot is labeled by the number of nonzero pizels,
out of 10000, in the underlying signal.

4.1. The inductance plethysmography data

The first example is a data set described by Nason (1996) in an anesthesio-
logical study using inductance plethysmography. The data were collected in an
investigation of the recovery of patients after general anesthesia. The data are
available as part of the wavethresh3 package (Nason, 1998). This example is
used to explain the general approach in the wavelet context. The original data
are plotted in Figure 4.1.

4.2. Empirical Bayes thresholding of the discrete wavelet transform

The basic steps in the approach as applied in this case are as follows:

1. Calculate the discrete wavelet transform of the data. In our particular ex-
ample, we calculate six levels of the transform applying reflection boundary
conditions.
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Inductance Plethysmography Raw Data
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FIGURE 4.1 Inductance plethysmography data.

2. Estimate the noise variance from a median-absolute-deviation estimator
applied to the coefficients at the finest scale level. This approach gives a
value of 0.0108 for the noise standard deviation of the wavelet coeflicients.

3. Apply the EbayesThresh method level-by-level to obtain a new array of
discrete wavelet coefficients.

4. Invert the resulting discrete wavelet transform to obtain the smoothed es-
timate of the curve underlying the observed data.

A plot of the resulting curve is given in Figure 4.2.

4.8. The estimated thresholds

In this section we investigate in more detail the way that the EbayesThresh
approach deals with the wavelet coefficients at various levels in the given example.
Label the finest scale coefficients as level 1, and then subsequently coarser scales
consecutively. With this labelling, the thresholds estimated by the method are
as in the following table, which gives the thresholds both in absolute terms and
in terms of the estimated standard deviation of the noise:
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Smoothed IP Data: White Noise Model
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FIGURE 4.2 Smoothed inductance plethysmography data, obtained by applying the EbayesThresh
approach to each level of the wavelet transform, with the default option of the same noise standard
deviation at all levels.

Level 1 2 3 4 5 6
Threshold (as multiple of noise std dev) | 4.08 391 3.16 229 0 0
Threshold (in absolute terms) 044 042 034 025 0 O

These thresholds are instructive. At the two finest scales of the transform,
the threshold chosen is around four standard deviations, and is in each case the
universal threshold /2 log n where n is the length of the vector of coefficients at
the relevant level. This is the largest threshold that the method can choose, and
is the value appropriate to a very sparse signal. On the other hand, at levels 5 and
6, the chosen threshold is zero, so that essentially no thresholding is carried out;
this is the treatment appropriate for a signal that contains no zerces at all. On
the other hand at the intermediate levels 3 and 4, a threshold is chosen between
these extremes, corresponding to the notion that the signal is moderately sparse.

Further insight can be gained by examining Figure 4.3. This gives a normal
quantile plot of the wavelet coefficients at each level of the transform. In every
case, the dashed line shows the expected plot that would be obtained if the
relevant coefficients were all normally distributed with mean zero and standard
deviation equal to the value &; estimated from the coefficients at level 1. (Ignore
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FIGURE 4.3 Normal plots of the coefficients at each level of the discrete wavelet transform of the
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the coefficients at the finest level.
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the solid lines for the moment.) It can immediately be seen that, if the noise in
the data is assumed to be N(0,6%) at every level, it is reasonable to assume that
virtually all the underlying signal values at levels 1 and 2 are zero, so that the
observed data, except for a very small number of extreme values, come from the
noise distribution. On the other hand, the dashed line is a poor fit at levels 5 and
(especially) 6, even in the part of the distribution near zero, so it is reasonable
that the empirical Bayes method chooses a prior probability of one that the
signal values are nonzero. Finally, one can see the appropriateness of considering
the signals at levels 3 and 4 to be mixtures of a mass at zero and a nonzero
distribution. As one moves from coarser to finer levels, the treatment chosen by
the method corresponds to increasing sparsity, and hence to a higher choice of
threshold at finer levels.

Even if one did not constrain the noise at all levels to have the same standard
deviation, the plots still indicate that the distributions are further from normal
at the coarser levels. The solid lines show the expected plots that would be
obtained if the data were normally distributed with standard deviation estimated
separately at each level; the increasingly heavy tails of the observations at coarser
levels are clear.

4.4. The stationary noise model

Johnstone and Silverman (1997) considered the use of wavelet thresholding
methods for data where the original noise is stationary but correlated. They
showed that an appropriate approach is to carry out wavelet thresholding as if
the noise were independent, but to allow different noise variances at different
levels. In our context, this would correspond to estimating the noise variance
using the median absolute deviation separately at each level. If this is used then
the resulting estimated thresholds are as follows:

Level 1 2 3 4 5 6
Threshold (as multiple of noise std dev) | 4.08 3.91 3.40 2.61 2.07 1.70
Threshold (in absolute terms) 0.044 0.042 0.039 0.033 0.064 0.184

It can be seen that the treatment of the finest two levels is the same as
previously, but that coarser levels are thresholded somewhat more severely (higher
thresholds) than before, whether the thresholds are expressed in terms of the
individual standard deviations or in absolute terms. Another interesting feature
is the way that the signal is judged to be progressively less sparse as the scale
becomes coarser, again bearing out the impression given by Figure 4.3.
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Smoothed IP Data: Stationary Noise Model
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FIGURE 4.4 Smoothed inductance plethysmography data, obtained by allowing different noise
standard deviations at each level of the wavelet transform. This corresponds to an assumption
of stationary correlated noise.

A plot of the resulting estimate is given in Figure 4.4. A comparison between
this estimate and the estimate based on a white noise error model is given in
Figure 4.5. The first segment presented there is the one containing the highest
peak in the data. There is little noticeable difference between the two estimates
in this region, but if anything the peak is more sharply estimated in the station-
ary noise model. The second segment is one in which there is regular oscillatory
variation at a fairly low frequency; the slight additional smoothness in the sta-
tionary noise estimate perhaps yields slightly preferable estimates. In the third
short segment, including the high frequency glitch at time 3500, both methods
retain the presumably spurious high frequency effect, but the stationary noise
method removes the other local variability. Overall the stationary noise plots
remove some moderately high frequency effects still present in the white noise
plots.

The ‘glitch’ around point 3500 is caused by a single wavelet coefficient at
the finest level taking a value six estimated standard deviations from zero, and
this, and its partner in the reflected sequence of coefficients, are the only wavelet
coefficients at the finest level that survives the thresholding; such a coefficient is
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FIGURE 4.5 Comparison between wavelet smoothing with a white noise model (left column of
plots) for the error and a stationary noise model (right column), where the noise variance in the
wavelet coefficients is estimated separately at each level. The comparison is made for various
short segments of the data, intervals (101,300), (2501,3000) and (3401, 3600) of the original
index set.
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highly significant by any accounts. The numerical values of the observations in
the interval [3491, 3510] are

[3491] -.078 -.088 -.076 -.086 -.090

[3496] -.083 -.054 -.142 -.081 -.071
[3501] -.098 -.086 -.083 -.078 -.059
(3506] -.086 ~-.090 -.073 -.086 -.076

Thus, observation 3497 is somewhat higher than its neighbours, and is immedi-
ately followed by the anomalously low observation —.142 at time 3498. Given
that the instrumentation is generally more stable than this, one possible safe-
guard in future data analysis would be specifically to look out for outliers of this
kind; a simple way of doing this would be to zero out all the wavelet coefficients
at the finest level, in other words to use an infinite threshold, and the effect of
this in the current plots would be just to remove the glitch.

4.5. The translation-invariant wavelet transform

It is generally recognized that improved smoothing results can often be ob-
tained using the translation-invariant wavelet transform; see, for example, Coif-
man and Donoho (1995). This transform is also called the non-decimated, max-
imal overlap, or stationary wavelet transform. Given an original sequence of
length N, this transform yields a sequence of N coeflicients at each scale, rather
than a pyramid of coefficient vectors whose length divides by two at successively
coarser levels.

As discussed in detail in Johnstone and Silverman (2005b), the most straight-
forward way of applying the empirical Bayes approach is to threshold the coef-
ficient vector at each level as if it were an independent sequence. To obtain the
estimated curve, we then use the standard inversion algorithm for the translation-
invariant wavelet transform.

The result of this procedure is plotted in Figure 4.6. It can be seen that the
estimated curve is somewhat smoother than those obtained using the standard
discrete wavelet transform. The high frequency effect at index 3500 is reduced in
size. This is because, at the finest level, the inverse of the translation-invariant
wavelet transform involves averaging the inverse of discrete transforms at two
different positions, corresponding to basing the wavelets at odd or even positions
in the original data sequence. The very large wavelet coefficient only occurs in
one of these sequences, and so in the estimated curve the amplitude of the ‘glitch’
is halved.
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FIGURE 4.6 Smoothed inductance plethysmography data, obtained from a translation-invariant
wavelet transform and then applying the EbayesThresh approach estimating the noise variance
separately at each level.

4.6. Smoothing an image

We now move to the consideration of the possible use of the method for the
processing of the wavelet transform of a two-dimensional image. The example we
use will be the image of Ingrid Daubechies contained in the waveslim package in
R.

Especially when processing images, it may be appropriate to use dictionaries
other than the standard two-dimensional wavelet transform. Therefore this sec-
tion should be read in a ‘tutorial’ way; its purpose is not to set out a black box
recipe, but to illustrate how the basic EbayesThresh approach can be used in a
broader context.

The standard deviation of the original image is about 35 and for this example
we use noise with standard deviation 10. Fuller details are given in Johnstone
and Silverman (2005a). The two-dimensional wavelet expansion of an image
yields three arrays of coefficients at each level. We consider the finest four levels,
therefore smoothing twelve arrays of coefficients altogether, but preserving the
matrix of ‘scaling’ coeflicients at the coarsest level.

In order to estimate the noise standard deviation from the data, we apply the
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median absolute deviation function to the all the wavelet coefficients at level 1
(combining the three arrays for this purpose). This gives the result 10.25, very
close to the theoretical value 10. We apply the EbayesThresh approach to the
twelve matrices of coeflicients with this noise standard deviation.

It is of interest to consider the thresholds estimated by the method; these are
given as follows. In this list, the letters L and H indicate whether the coefficients
result from a low or high pass filter, in the x and y directions respectively. The
number refers to the level, with 1 being the finest level. The scaling coefficients
at the coarsest scale would correspond to an entry LL4, which is not shown.

LH1 HL1 HH1 LH2 HL2 HH2 LH3 HL3 HH3 LH4 HL4 HH4
4.41 3.81 4.41 2.42 2.58 3.26 1.01 0.92 1.85 0.00 0.00 0.00

These thresholds are interesting. There is no thresholding at level 4. At the
finest level 1, on the other hand, the LH and HH coefficients are thresholded at
the universal threshold 1/2log(128 x 128) for data sets of their size, while the
HL coeflicients are subject to thresholding nearly as stringent. At levels 2 and 3
the thresholding applied to the HH coeficients is higher than that applied to the
LH or HL coefficients. It is reasonable to consider the HH2 coefficients as being
at a level intermediate between level 1 and 2, and the HH3 as being intermediate
between levels 2 and 3, and so on; with this convention, the estimated thresholds
increase monotonically as one moves from coarser to finer levels.

Figure 4.7 shows the original image, the noisy image, and the estimate of the
image as obtained using EbayesThresh as set out in this section. In addition, we

show a kernel smooth with bandwidth parameter adjusted to minimize the L;
distance between the estimate and the original image dau; the average L; error
of both the kernel smooth and the fully automatic EbayesThresh wavelet smooth
is 3.07.

In the kernel smooth, there is considerable remaining random error in the flat
parts of the plot, and some of the highlights and details are slighly more smoothed
out than in the wavelet plot. On the other hand, in the wavelet plot there are some
spurious artefacts. In addition, it is encouraging that the EbayesThresh method
has succeeded in automatically achieving the L; error of the kernel estimate
chosen by reference to the true image. Furthermore, it is now well understood that
the standard two-dimensional wavelet transform is not a very good dictionary for
the representation of images. In principle, our empirical Bayes approach is equally
applicable whatever the transform used, and will take advantage of sparsity in
the representation of the function or image being estimated, and so if a dictionary
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Original Noisy

EbayesThresh Kernel

FIGURE 4.7 Top left: original image of Ingrid Daubechies; top right: effect of adding normal
independent noise; bottom left: result of applying the empirical Bayes smoothing method to the
individual matrices of coefficients; bottom right: kernel smooth of noisy image, with bandwidth
chosen to minimize the average absolute error.

more specifically suited to the representation of this type of image were used, one
could expect even better results.

5. THEORETICAL RESULTS

In this section, we review some of the theoretical properties of the EbayesThre-
sh method. We first consider the estimation of a single sequence p; of parameters
from a sequence of observations X; distributed independently N(u;,1). The the-
ory explores how well the sequence p; is estimated by the EbayesThresh proce-
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dure, and compares this quality of estimation with the rate that can be obtained
by the best possible estimator under given assumptions.

5.1. Sparsity

The sparsity of a signal is not just a matter of the proportion of u; that
are zero or very near zero, but also of more subtle ways in which the energy
of the signal p is distributed among the various components. Our theory will
demonstrate that the empirical Bayes choice of estimated threshold yields a highly
adaptive procedure, with excellent properties for a wide range of conditions on
the underlying signal.

A natural notion of sparsity is the possibility that u is a nearly black signal,
in the sense that the number of indices ¢ for which p; is nonzero is bounded. We
define

boln) = {p:n™1 > I[u # 0] < n}. (5.1)
i=1

A more subtle characterization of sparsity will not require any y; to be exactly
zero, but still control the concentration of the energy of the signal by placing
bounds on the p-norm of y for p > 0. In this case, we suppose the signal is
belongs to an £, norm ball of small radius 7,

o) = {p: 071>l <P} (52)

For reasons set out in Johnstone and Silverman (2004a), for 0 < p < 2, among
all signals with a given energy, the sparse ones are those with small £, norm.

5.2. Quality of estimation

We shall compare the EbayesThresh estimator with the minimax estimators
over sets of sequences of particular sparsity. The estimator that attains the ideal
performance over a nearly black class, or over an £, ball for some p > 0, will
in general depend on p and on 7. The minimax rate is a benchmark for the
estimation of signals that display the sparseness characteristic of membership
of an £, class. Our main theorem will show that, under mild conditions, an
empirical Bayes thresholding estimate will essentially achieve the minimax rate
over 7 simultaneously for all p in [0, 0c], including the nearly black class as the
case p = 0.

It should also be added that we do not restrict attention to losses based on
squared errors, but we can measure risk by the average expected g** power loss
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for any ¢ in (0, 2],

n
Ry(ft, ) =) Elfsy = psl?. (53)
=1

We set two goals for estimation using the empirical Bayes threshold: ‘uniform
boundedness of risk’, and ‘flexible adaptation’. To explain what we mean by
flexible adaptation, suppose that the signal is sparse in the sense of belonging to
an £, norm ball £,[n] as defined in (5.2). As before, we include nearly black classes
as the case p = 0. If the radius 7 is small, we would hope that the estimation

error R,y(fi, 1) should be appropriately small. How small is benchmarked in terms
of the minimax risk

R q(fp[n]) = inf sup Rq(i, p).
H petyin)

Suppose n = 1, — 0 as n — oo but that, in the case ¢ > p > 0,

=

n~ Py~ (lognP)z — 0, (5.4)

which prevents 7 from becoming very small too quickly. (For p = 0 we require
nn — 00.) Then (Donoho and Johnstone, 1994a, with slight modifications) we
have the asymptotic relation

Ry q(lpinn]) ~ 1p.q(1n) as n — 0o, (5.5)
where
n? 0<g<p
rog(m) = nP(2logn P)e P2 0<p<yq (5.6)
n(2logn 1)e/2 p=0,g>0.

The main theoretical result, stated in detail and proved in Johnstone and
Silverman (2004a), gives comparable bounds on the risk function of the empirical
Bayes thresholding procedure. Apart from an error of order n~!(log n)2+(q_p/\2)/ 2
the procedure uniformly attains the same error rate as the minimax estimator for
all p in [0, 0c] and ¢ in (0, 2]. The result assumes that the prior function 7 in the
EbayesThresh procedure has tails that are at least as heavy as an exponential
distribution and no heavier than Cauchy, so that both the Laplace and quasi-
Cauchy estimators are included. There is considerable freedom about the choice
of estimation rule. Apart from the posterior mean, all the rules mentioned above
can be used and the result remains valid. (The posterior mean also works, but
only for a restricted range for the parameter q.)
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THEOREM 5.1. Under appropriate assumptions on the estimation procedure
set out in detail in Johnstone and Silverman (2004a), suppose that X ~ Np(u,I),
that 6(z,t) is a thresholding rule with threshold t and that 0 < p < oo and
0 < g <2 Letw be the weight chosen by marginal mazximum likelihood within the
EbayesThresh paradigm, and let f = t(w), where t(w) denotes the threshold of the
posterior median rule corresponding to the prior weight w. Then the estimator
fi(x) = 0(zs, t(W)) satisfies

(a) (Uniformly bounded risk) There exists a constant Co(q) such that

sup Rg(fi, p) < Co.
U

(b) (Adaptivity) There exist constants Ci(p,q) such that for n < no(p,q) and
n > no(p, q)

sup Rgy(fi, ) < C11pq(n) + Con~L(logn)?+a—pr2)/2, (5.7)
pelpn]

When q € (1, 2], these results also hold for the posterior mean estimate [i.

We emphasize that it is not necessary that é(x,t) be derived from the poste-
rior median or mean rule. It might be hard or soft thresholding or some other
nonlinearity with the stated properties. The point of the theorem is that empir-
ical Bayes estimation of the threshold parameter suffices with all such methods
to achieve both adaptivity and uniformly bounded risk.

From the theorem, it can be concluded that, for every p in (0,00] and ¢ in
(0,2], and for the nearly black case p = 0, our estimator attains the optimal
g-norm risk (5.6), up to a constant multiplier, for all sufficiently large n and for
n satisfying n~llogZn < nPA2 < ngm if p>0and n~tlog?n <np<mnifp=0.
In this sense it adapts automatically to the degree and character of sparsity of
the signal in the optimum possible way over an extremely wide range of signal
classes.

5.3. Wavelet estimators

The paper Johnstone and Silverman (2005b) explores in detail several theoret-
iical aspects of the EbayesThresh approach to function estimation using wavelets.
In this section, one of the key results is reviewed briefly; for full details see the
original paper.

Suppose we have noisy observations of a function f at a grid of N = 27 points,

Zi=f(i/N)+¢ €; independent N (0, 1).
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Assume that we construct an estimator by carrying out a discrete wavelet trans-
form of the vector of observations Z;, applying EbayesThresh to the vector of
coefficients at each level, and then transforming back.

The paper finds overall bounds on the risk of the method subject to member-
ship of the unknown function in one of a wide range of Besov classes, covering also
the case of f of bounded variation. The rates obtained are optimal for any value
of the parameter p in (0, oo], simultaneously for a wide range of loss functions,
each dominating the L, norm of the oth derivative, with ¢ > 0 and 0 < ¢ < 2.

The basic result of the paper is as follows. Let djz = N %ij be the coeflicients
of an orthogonal discrete wavelet transform of the sequence f(t;), and let d;
denote the vector with elements d;; as k varies. For 0 < p < oo and a >
(1/p)—(1/2), let a = a— (1/p) + (1/2). Define the Besov sequence space by ., (C)
to be the set of all coefficient arrays 8 such that

> 10;klP < CP27 for all j with L—1<j < J. (5.8)
k

Our theory shows that for some constant ¢, possibly depending on p and « but
not on N or C,

N
; bsup(c) N-lE Z{f(tz) _ f(tz)}2 < C{C2/(2a+1)N~2a/(2a+1) + N‘l(log N)4}
€05,00 i=1

(5.9)
For fixed C, the second term in the bound (5.9) is negligible, and the rate
O(N—2a/Qa41)y of decay of the mean square error is the best that can be attained
over the relevant function class. The result (5.9) thus shows that, apart from the
O(N~'log* N) term, our estimation method simultaneously attains the optimum
rate over a wide range of function classes, thus automatically adapting to the
regularity of the underlying function. Under appropriate conditions, the Besov
sequence space norm used in (5.8) is equivalent to a Besov function space norm
on f with the same parameters.

The main theorem of the paper goes considerably beyond (5.9), in the follow-
ing respects:

e It demonstrates the optimal rate of convergence for mean g-norm errors for
all 0 < ¢ < 2, not just the mean square error considered in (5.9).

e Beyond the posterior median, any thresholding method satisfying certain
mild conditions can be used, and for 1 < ¢ < 2 the results also hold for the
posterior mean.
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e If an appropriate modified threshold method is used, the optimality also
extends to the estimation of derivatives of f.

Overall, as for the single sequence case, the EbayesThresh estimates demon-
strate remarkable adaptivity when applied in the wavelet context. The Besov
scale of functions encompasses a very wide range of function behaviour, and what
the EbayesThresh procedure does is to take advantage of inhomogeneity when it
can. It would be natural to assume that the choice of a good estimator would
depend strongly on the properties of the underlying function, but our theory
demonstrates that the EbayesThresh estimator can automatically deal optimally
with function classes of many kinds.

6. CONCLUDING REMARKS

The empirical Bayes method set out in this paper and implemented in the
EbayesThresh package has wide potential applicability. There are increasingly
many contexts where, implicitly or explicitly, one is estimating a large number of
parameters and it is necessary or advisable to take advantage of possible sparsity
in the parameter set. While it was the wavelet context that gave the authors
the original motivation for investigating this methodology, both theoretical and
practical considerations have already shown that it has much wider relevance,
though of course there are many aspects that raise interesting topics for future
research. I am extremely grateful to the Korean Statistical Society for inviting
me to present this work.
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