• Title/Summary/Keyword: Data Mining Tool

Search Result 220, Processing Time 0.025 seconds

Dynamic Decision Tree for Data Mining (데이터마이닝을 위한 동적 결정나무)

  • Choi, Byong-Su;Cha, Woon-Ock
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.6
    • /
    • pp.959-969
    • /
    • 2009
  • Decision tree is a typical tool for data classification. This tool is implemented in DAVIS (Huh and Song, 2002). All the visualization tools and statistical clustering tools implemented in DAVIS can communicate with the decision tree. This paper presents methods to apply data visualization techniques to the decision tree using a real data set.

Use of Information Component (IC) and Relative Risk (RR) for Signal Detection of Drug Interactions of Clopidogrel : Data-mining Study Using Health Insurance Review & Assessment Service (HIRA) Claims Database (정보 성분과 상대위험도를 이용한 clopidogrel의 약물상호작용 시그널 검색 : 건강보험데이터베이스를 대상으로 한 데이터마이닝 연구)

  • Kim, Jin-Hyung;Choi, Chung-Am;Oh, Jung-Mi;Son, Sung-Ho;Shin, Wan-Gyoon
    • Korean Journal of Clinical Pharmacy
    • /
    • v.21 no.2
    • /
    • pp.90-99
    • /
    • 2011
  • Health Insurance Review & Assessment Service (HIRA) claims database has a high potential to detect signals of new drug interactions. The aim of this study was to evaluate the usefulness of information component (IC) and relative risk (RR) as a tool for signal detection, and to analyze the possible drug interactions caused by clopidogrel using HIRA claims database. This study was performed in elderly patients over 65 years of age who administered clopidogrel from January 2005 to June 2006 in South Korea. Serious Adverse Events (SAEs) as drug interactions of clopidogrel were defined as any ambulatory hospitalization for ischemic diseases within comcomitant medication period of clopidogrel. Information Component (IC) and Relative Risk (RR) were calculated to compare the proportion of drug-SAE pairs in order to select drug specific SAEs. IC and RR signals of clopidogrel drug interaction were screened when IC's 95% confidence interval was greater than 0 and RR's 95% confidence interval was greater than 1 respectively. All detected signals were compared to references such as $Micromedex^{(R)}$ and 2010 Drug Interaction $Facts^{TM}$. Sensitivity, specificity, positive predicted value and negative predicted value were used to evaluate usefulness of this method. Among 13,252,930 cases of elderly patients who co-administered clopidogrel and other drugs, 47,485 cases were detected as SAE. Of these, one-hundred nine cases were detected by the IC-based data-mining approach and ninety one cases were detected by the RR-based data-mining approach. Total One-hundred sixty three unrecognized signals were detected by IC or RR. Twelve signals from IC-based data-mining (57.1%) were corresponded with drug interactions from references and eight signals from RR-based data-mining (38.1%) were corresponded with drug interactions from references. These signals include proton pump inhibitors, calcium channel blockers and HMG CoA reductase Inhibitors, which were known to affect CYP450 metabolism. Further studies using HIRA claims database are necessary to develop appropriate data-mining measure.

Prediction of Length of ICU Stay Using Data-mining Techniques: an Example of Old Critically Ill Postoperative Gastric Cancer Patients

  • Zhang, Xiao-Chun;Zhang, Zhi-Dan;Huang, De-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.97-101
    • /
    • 2012
  • Objective: With the background of aging population in China and advances in clinical medicine, the amount of operations on old patients increases correspondingly, which imposes increasing challenges to critical care medicine and geriatrics. The study was designed to describe information on the length of ICU stay from a single institution experience of old critically ill gastric cancer patients after surgery and the framework of incorporating data-mining techniques into the prediction. Methods: A retrospective design was adopted to collect the consecutive data about patients aged 60 or over with a gastric cancer diagnosis after surgery in an adult intensive care unit in a medical university hospital in Shenyang, China, from January 2010 to March 2011. Characteristics of patients and the length their ICU stay were gathered for analysis by univariate and multivariate Cox regression to examine the relationship with potential candidate factors. A regression tree was constructed to predict the length of ICU stay and explore the important indicators. Results: Multivariate Cox analysis found that shock and nutrition support need were statistically significant risk factors for prolonged length of ICU stay. Altogether, eight variables entered the regression model, including age, APACHE II score, SOFA score, shock, respiratory system dysfunction, circulation system dysfunction, diabetes and nutrition support need. The regression tree indicated comorbidity of two or more kinds of shock as the most important factor for prolonged length of ICU stay in the studied sample. Conclusions: Comorbidity of two or more kinds of shock is the most important factor of length of ICU stay in the studied sample. Since there are differences of ICU patient characteristics between wards and hospitals, consideration of the data-mining technique should be given by the intensivists as a length of ICU stay prediction tool.

Development of the Performance Benchmark Tool for Data Stream Management Systems Combined with DBMS (DBMS와 결합된 데이터스트림관리시스템을 위한 성능 평가 도구 개발)

  • Kim, Gyoung-Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.1-11
    • /
    • 2010
  • Many applications of DSMS(Data Stream Management System) require not only to process real-time stream data efficiently but also to provide high quality services such as data mining and data warehouse combining with DBMS(Database Management System) to users. In this paper we execute the performance benchmark of the combined system of DSMS and DBMS that is developed for high quality services. We use the stream data of network monitoring application system and combine the traditional representative DSMSs and DBMSs in a single system for the performance testing. We develop the total performance benchmark tool implementing JAVA language for the our testing. For our performance testing, we combine DSMS such as STREAM and Coral8 and DBMS such MySQL and Oracle10g respectively.

Analyzing Infertility Stress and Assessment Tools for Korean Women: In-Depth Interview Study (한국 난임 여성의 스트레스와 평가도구 분석: 심층 면담을 통한 연구)

  • Soo-Jin Lee;Su-Ji Choi
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.37 no.3
    • /
    • pp.63-84
    • /
    • 2024
  • Objectives: This study aims to understand the stress patterns and coping behaviors of women with infertility and to improve existing infertility stress assessment tools to develop a tool suited for Korean society. Methods: The study involved 10 women diagnosed with primary or secondary infertility. Data were collected through surveys and in-depth interviews. Participants were recruited voluntarily, and snowball sampling was used for additional recruitment. Data collection occurred from September 2023 to April 2024. Data analysis included Spearman's rank correlation, Mann-Whitney U test, and Kruskal-Wallis test. Interview results were analyzed using text mining and network analysis with Python 3.12. Results: There was a significant correlation between IVF/ICSI treatment and resilience scores, with non-IVF/ICSI groups showing higher resilience scores. Existing infertility stress assessment tools were generally useful but had limitations, such as discomfort with religious expressions and fixed gender roles, as well as issues with the number of items and response scales. Text mining of interview responses revealed key stress-related keywords including worry, depression, burden, pregnancy outcome, and health. Main stressors included uncertainty about pregnancy outcomes, physical discomfort during treatments, economic burdens, and emotional reactions from family and social relationships. Conclusions: This study identified the stress patterns of women with infertility through interviews. It showed the need for a new assessment tool to evaluate and support the complex stressors experienced by these women. Developing a comprehensive tool is essential for better understanding and managing the various stress factors faced by infertile women.

Standard-based Integration of Heterogeneous Large-scale DNA Microarray Data for Improving Reusability

  • Jung, Yong;Seo, Hwa-Jeong;Park, Yu-Rang;Kim, Ji-Hun;Bien, Sang Jay;Kim, Ju-Han
    • Genomics & Informatics
    • /
    • v.9 no.1
    • /
    • pp.19-27
    • /
    • 2011
  • Gene Expression Omnibus (GEO) has kept the largest amount of gene-expression microarray data that have grown exponentially. Microarray data in GEO have been generated in many different formats and often lack standardized annotation and documentation. It is hard to know if preprocessing has been applied to a dataset or not and in what way. Standard-based integration of heterogeneous data formats and metadata is necessary for comprehensive data query, analysis and mining. We attempted to integrate the heterogeneous microarray data in GEO based on Minimum Information About a Microarray Experiment (MIAME) standard. We unified the data fields of GEO Data table and mapped the attributes of GEO metadata into MIAME elements. We also discriminated non-preprocessed raw datasets from others and processed ones by using a two-step classification method. Most of the procedures were developed as semi-automated algorithms with some degree of text mining techniques. We localized 2,967 Platforms, 4,867 Series and 103,590 Samples with covering 279 organisms, integrated them into a standard-based relational schema and developed a comprehensive query interface to extract. Our tool, GEOQuest is available at http://www.snubi.org/software/GEOQuest/.

A Web Recommendation System using Grid based Support Vector Machines

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.91-95
    • /
    • 2007
  • Main goal of web recommendation system is to study how user behavior on a website can be predicted by analyzing web log data which contain the visited web pages. Many researches of the web recommendation system have been studied. To construct web recommendation system, web mining is needed. Especially, web usage analysis of web mining is a tool for recommendation model. In this paper, we propose web recommendation system using grid based support vector machines for improvement of web recommendation system. To verify the performance of our system, we make experiments using the data set from our web server.

Integrated System of On-Off Line in Agricultural Products Electronic Commerce Based on Data Mining (데이터 마이닝을 이용한 농산물 전자상거래의 온 오프라인 통합시스템)

  • Ju Jong-Moon;Hwang Seung-Gook
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.171-176
    • /
    • 2002
  • The Internet, as a commercial tool, provided a new market that connects producers to consumers through I-commerce. 2-commerce through the Internet became a new trend in all industries. This research indicates problems that block the activation of I-commerce of agricultural products, which is less developed than the other industries. To solve the problems it suggests E-commerce for agricultural products combining on and off line markets. It also suggests data mining technique for analyzing entire information in system.

  • PDF

Changes in Specialty Coffee Consumption Post-pandemic

  • Lim, Miri;Ryu, Gihwan
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.157-161
    • /
    • 2022
  • The coffee industry continues to grow steadily due to the spread of coffee and changes in consumer awareness. Once upon a time, instant coffee was common, People today have distinct personal preferences As consumption needs for favorite foods are segmented, ways to enjoy coffee are diversifying. This study was conducted through analysis of consumption changes for specialty coffee as a changed issue of COVID-19 The goal is to present a vision for the future of the specialty coffee industry. As a research method, text mining through big data analysis was conducted to extract and analyze factors affecting the change in specialty coffee consumption. As a result of the study, we judged that specialty coffee is consumed by using a drip tool that allows you to easily enjoy coffee at home after Corona 19. Therefore, hand drips used in home cafes were found to play a central role in the change in specialty coffee consumption.

Understanding the Food Hygiene of Cruise through the Big Data Analytics using the Web Crawling and Text Mining

  • Shuting, Tao;Kang, Byongnam;Kim, Hak-Seon
    • Culinary science and hospitality research
    • /
    • v.24 no.2
    • /
    • pp.34-43
    • /
    • 2018
  • The objective of this study was to acquire a general and text-based awareness and recognition of cruise food hygiene through big data analytics. For the purpose, this study collected data with conducting the keyword "food hygiene, cruise" on the web pages and news on Google, during October 1st, 2015 to October 1st, 2017 (two years). The data collection was processed by SCTM which is a data collecting and processing program and eventually, 899 kb, approximately 20,000 words were collected. For the data analysis, UCINET 6.0 packaged with visualization tool-Netdraw was utilized. As a result of the data analysis, the words such as jobs, news, showed the high frequency while the results of centrality (Freeman's degree centrality and Eigenvector centrality) and proximity indicated the distinct rank with the frequency. Meanwhile, as for the result of CONCOR analysis, 4 segmentations were created as "food hygiene group", "person group", "location related group" and "brand group". The diagnosis of this study for the food hygiene in cruise industry through big data is expected to provide instrumental implications both for academia research and empirical application.