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Abstract
Gene Expression Omnibus (GEO) has kept the largest 
amount of gene-expression microarray data that have 
grown exponentially. Microarray data in GEO have been 
generated in many different formats and often lack 
standardized annotation and documentation. It is hard 
to know if preprocessing has been applied to a dataset 
or not and in what way. Standard-based integration of 
heterogeneous data formats and metadata is necessary 
for comprehensive data query, analysis and mining. We 
attempted to integrate the heterogeneous microarray 
data in GEO based on Minimum Information About a 
Microarray Experiment (MIAME) standard. We unified the 
data fields of GEO Data table and mapped the attrib-
utes of GEO metadata into MIAME elements. We also 
discriminated non-preprocessed raw datasets from oth-
ers and processed ones by using a two-step classi-
fication method. Most of the procedures were devel-
oped as semi-automated algorithms with some degree 
of text mining techniques. We localized 2,967 Platforms, 
4,867 Series and 103,590 Samples with covering 279 
organisms, integrated them into a standard-based rela-
tional schema and developed a comprehensive query in-
terface to extract. Our tool, GEOQuest is available at 
http://www.snubi.org/software/GEOQuest/

Keywords: gene expression data, data integration, clas-
sification

Introduction
After genome sequencing, DNA microarray analysis has 
become the most widely used source of genome-scale 
data in the life sciences (Allison et al., 2006; Brazma et 
al., 2001). DNA microarray is a high-throughput and da-
ta-intensive technology that provides the means of 
measuring the expression of thousands of genes or pro-
teins simultaneously and brings the unprecedented de-
velopment in the informatics and analysis aspect 
(Chaussabel and Sher, 2002; Quackenbush, 2002). 
Since this technique provides researchers with compre-
hensive understanding of biological complex features, it 
has been used in not only biological but also clinical 
field. 
  As many microarray experiments generate large data 
sets that can contain tens to hundreds of samples, 
however, it has needed to be managed systematically 
with computational tools due to their own complexity. 
Moreover, requirements for ensuring the scientific in-
tegrity of data and sharing the data have given rise to 
development of public microarray repositories like GEO 
(Barrett et al., 2007), ArrayExpress (Parkinson et al., 
2007), Stanford Microarray Database (SMD) (Gollub et 
al., 2003), keeping pace with the standardization (Edgar 
and Barrett, 2006; Perou, 2001). With appearance of 
them, the data generated in one laboratory can be avail-
able to other researchers and various analytical methods 
uncover different biological insights.
  Especially, NCBI GEO has kept the largest amount of 
gene expression data which have grown exponentially, 
currently holdingover 200,000 samples. Recently, re-
searches to find clinical or biological meaning using 
GEO data have been actively performed to show its 
reusability. Butte et al. (2006) constructed Phenome-Ge-
nome network, Disease Nosology and Gene-Behavior- 
Disease through analysis of huge amounts of gene ex-
pression data in GEO using Unified Medical Language 
System (UMLS) (Humphreys et al., 1998). Yoon et al. 
(2006) constructed an application tool to provide the 
present large-scale approach for the analysis of GEO 
microarray data. 
  Though GEO has abundant practical possibilities, it 
does not support the standard format or model but its 
self-structured format. Moreover, it stores the microarray 
data without distinguishing processed data and raw 
data. These factors hinder providing a comprehensive 
biological analysis environment and future integration of 
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Table 1. Criteria for data field unification

Entity Property of representative fields
Number 

of fields

Platform Required field of MIAME, Required field of GEO, Public biological database 

  name (ex. GenBank, Unigene, Entrez Gene and so on (Wheeler et al., 2007).)

42

Sample Dual channel Required field of GEO, GenePix Results file format 83

Single channel Spotted DNA/cDNA Required field of GEO, GEO fields used mostly and mainly 30

Spotted oligonucleotide 53

In situ oligonucleotide 15

Affymetrix 37

Fig. 1. The workflow of standard-based integration. As in-

dicated, the integration of heterogeneous GEO data into 

standard based-format was through several processes.

the external resources and make extracting the desired 
information difficult.
  Currently, some tools have been developed to utilize 
large-scale GEO data - SeqExpress (Boyle, 2005), 
GEOQuery (Sean and Meltzer, 2007), ArrayQuest (Ar-
graves et al., 2005). However, there is a limitation that 
they can handle only GEO DataSets which are curated 
by GEO staffs.
  To solve the problem and overcome the limitation, we 
attempted integration of heterogeneous microarray data 
in GEO using microarray data standard, Minimum Infor-
mation About a Microarray Experiment (MIAME). In 
GEO, it encourages submitters to supply MIAME stand-
ard compliant data. However, it is not related to the for-
mat, but rather to the content provided. 
  We performed data field unification of GEO Data table 
and distinguished between raw data and transformed 
data using classification method. To integrate the data 
in an efficient and accurate manner, these processes 
were developed in both manual and semi-automated 
way (Vita et al., 2006).

Methods
Biological research increasingly depends on computa-
tional analysis of data (Miotto et al., 2005). A pre-
requisite for computational analysis is the availability of 
experimental data in a formalized, structured and ma-
chine-readable format. GEO offers DataSet (GDS) which 
represents a curated collection of biologically and stat-
istically comparable data for computational analysis 
method. However, there is a limitation that GEO data 
are reassembled mainly for not entire GEO data but a 
unit of GEO Series (GSE) only. 
  To overcome the limitation and provide a compre-
hensive biological analysis environment, we attempted 
integration of heterogeneous microarray data in GEO 
using microarray data standard, Minimum Information 
About a Microarray Experiment (MIAME). Workflows are 
as follows (Fig. 1): GEO data localization, Data field uni-
fication, Data transformation classification, Standard- 

based integration of heterogeneous microarray data, 
and GEO data update.

Gene expression omnibus

GEO is an international repository for gene expression 
data. It is developed and maintained by the National 
Library of Medicine (NLM). It serves as a public re-
pository for a wide range of high-throughput ex-
perimental data like single and dual channel micro-
array-based experiments measuring mRNA, miRNA, ge-
nomic DNA and protein abundance. 
  In GEO, the basic entity types are Platform, Sample 
and Series. Platform includes a summary description of 
the array (Descriptive information) and a data table de-
fining the array template (Data table). Each row in the 
data table corresponds to a single element, and in-
cludes sequence annotation and tracking information as 
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provided by the submitter. Sample includes a descrip-
tion of the biological source and the experimental proto-
cols to which it was subjected (Descriptive information), 
and a data table containing hybridization measurements 
for each element on the corresponding Platform (Data 
table). Series defines a set of related Samples consid-
ered to be part of a study, and describes the overall 
study aim and design. Each of these entities is assigned 
an accession number that may be used to cite and re-
trieve the records.
  Each entity type has ‘Descriptive information’ for de-
scribing each entity’s correspondent information. Plat-
form and Sample have ‘Data table’ which consists of 
‘Header’ and ‘Matrix’. Header identifies the attributes of 
each column of Matrix. Matrix includes each entity’s 
correspondent data contents.

GEO data localization

We accessed and downloaded all GEO data on January 
22, 2007. Python language and MySQL DataBase 
Management System were used in Linux system for lo-
calizing GEO database. Since data in GEO’s File Transfer 
Protocol were updated late at that time, we used 
HyperText Markup Language (HTML) documents from 
which users can see web page. Accession Display - ac-
cession to the data through GEO accession number - 
was used to automatically download all GEO data. Using 
specific HTML tag structure, we localized all GEO data.
  To integrate increasingly large volume of GEO data, 
formalizing loosely-defined format of GEO is an indis-
pensable process. First, we determined representative 
fields and constructed mapping tables for Data table of 
three technology types - ‘spotted DNA/cDNA’, ‘spotted 
oligonucleotide’, and ‘in situ oligonucleotide’. The cri-
teria of determining representative fields for data field 
unification are shown in Table 1.
  To construct each mapping table, we adapted a sim-
ple text-mining method and performed through manual 
curation with checking a description and values of each 
field. Through the mapping tables, we mapped fields of 
all GEO Data table into each representative field. Five 
database tables are used to store the GEO Data table 
for Platform, dual channel Sample, and three technology 
types in single channel Sample. Ambiguous cases on 
mapping them are treated by EAV (Entity-Attribute- 
Value) table (Johnson et al., 1997) to prevent loss of da-
ta caused by the mapping process. 
  After inserting data into each result table is com-
pleted, the four tables of Sample are integrated through 
the next step

Data field unification

The GEO database architecture is designed for the effi-
cient capture and storage of heterogeneous high-through-
put data sets. The structure is sufficiently flexible to ac-
commodate evolving state of the art technologies 
(Barrett and Edgar, 2006). Consequently, the data have 
many different styles and comprise varying contents. 
  Due to the flexibility, GEO stores the data which in-
clude the words having the same concept but different 
spelling or some misspelled words without any control 
process. This characteristic increases heterogeneity be-
tween data in GEO and makes future integration of this 
resource with other biological and clinical data difficult. 

Standard-based integration of heterogeneous 
microarray data

Data standard is an essential requirement for repre-
sentation of information to ensure proper semantic in-
tegration of heterogeneous data, and also for communi-
cation standards to ensure interoperability between dis-
parate data sources (Louie et al., 2007; Martin-Sanchez 
et al., 2004). In microarray data, the introduction of the 
MIAME standard has been a great success (Rayner et 
al., 2006). However, the data format of GEO does not 
follow the standard. Therefore, it hinders semantic in-
tegration and interoperability between heterogeneous 
microarray data. For the reason, we customized the 
GEO data into MIAME standard-based format.
  First, we analyzed attributes of Descriptive information 
in each GEO entity to understand that which GEO at-
tribute corresponds to which part of MIAME. Second, 
we mapped GEO attributes to elements in each part of 
MIAME and stored them into the database. Third, we 
mapped values of some GEO attributes into controlled 
terms from the MGED Ontology (http://mged.sourceforge. 
net/ontologies/index.php). For example, we performed 
mapping from ‘technology type’ in Platform to 
TechnologyType class and from ‘type’ in Series to both 
MethodologicalDesign class and ExperimentalFactor 
class. In case of the ‘type’ in Series, there are the mul-
tiple values in one text, we split the text into single 
values. In the second and third processes, we per-
formed both a simple text mining method and manual 
curation with checking a description and values of each 
field. Finally, microarray data in which data field uni-
fication process is done are stored into one database 
table according to classification result between log-like 
transformed data and raw data.
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Fig. 2. Difference of distribution between raw data and 

log-transformed data in an identical data.

Table 2. Cases of transformation method treated as 

log-like transformation

GEO Description
Class by 

description

Human 

validation

RMA calculated Signal intensity Log-like Not Log

RMA Express calculated 

the Signal values
Log-like Not Log

RMA-calculated Signal intensity 

(natural scale)
Log-like Not Log

This is the gene expression value 

following quantile normalization 

and robust multi-array analysis.

Log-like Not Log

Expression values represented by 

RMA (R/Bioconductor; http://www. 

bioconductor.org/)

Log-like Not Log

Same as UNF_VALUE but with 

flagged values remove
Log-like Not Log

Table 3.  List in wrong description of data processing 

among 200 GEO Sample data sampled randomly

Representative method List of methods

Log-like transformation 

  value

Log transformed value

UNF_VALUE

Z-transformed value

Robust Multichip Average (RMA) value

VSN transformation

Data transformation classification

The hypothesis underlying microarray analysis is that 
the measured intensities for each arrayed gene repre-
sent its relative expression level. Before the levels can 
be compared appropriately, a number of transformations 
must be carried out on the data to adjust the measured 
intensities to facilitate comparisons and to select genes 
that are significantly differentially expressed (Quacken-
bush, 2002).
  In microarray data analysis, difference between raw 
data and transformed data affects analysis results 
importantly. Moreover, MIAME provides the conceptual 
structure for the representation of microarray data in-
cluding raw and processed data (Brazma et al., 2001; 
Rayner et al., 2006). However, both raw data and trans-
formed data are stored together in GEO with no 
separation. For the reasons, we must distinguish be-
tween transformed data and raw data. Even though 
submitters are encouraged to describe about a process 
of Sample ‘Value’ field which indicates final expression 
value measurements, a large part of ‘Value’ fields 
have not only an ambiguous description or no descrip-
tion but even wrong description (Table 2). 

  In this paper, we assumed that the log transformation 
are mainly used among the several transformation proc-
esses and attempted to distinguish raw data and 
log-like transformed data. We treated some trans-
formation method as log-like transformation (Table 3). 
We propose a model for data processing classification 
using machine learning techniques.

Selection of a training data set 
For most classification study, a training data set con-
sisting of records whose class labels are known must 
be provided. It is necessary to select training data prop-
erly because the training data set is used to build a 
classification model. First, we performed simple random 
sampling and extracted 200 GEO Samples. Sampling is 
a commonly used approach for selecting a subset of 
the data objects to be analyzed. Next, we classify data 
manually in compliance with three criteria for giving the 
correct class to data.
  • Description of ‘Value’ field in GEO Sample
  • Range of data distribution
  • Symmetricity of distribution
  In the classification process, guarantee of data quality 
is very important factor. We trimmed two-tailed 5% val-
ues of the distribution in each Sample to remove out-
liers before selection of training data. We extracted 188 
GEO Samples for three criteria and emailed to data 
submitters of 12 Samples, the rest of the data set. As 
a result, 190 Samples are determined as training set (96 
Log-like transformed data, and 94 Not-log transformed 
data). 

Learning process for classification model
We determined the features that can explain a differ-
ence between two classes to create a classification 
model.
  The first one is the difference of the skewness values 
between original distribution and its log-like transformed 
distribution (DSD). Skewness is a measure of the asym-
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Fig. 3. General workflow of GEO data update. 
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  where χi is each value of the distribution and x rep-
resents the mean value of the distribution. n is the num-
ber of values in the distribution.
  If expression values of raw data are log-like trans-
formed, the skewness of original distribution is changed 
remarkably (Fig. 2). However, if those of log-like trans-
formed data are log-like transformed again, the skew-
ness is changed slightly. This characteristic makes the 
feature available for the classification model.
  Second, a maximum value of data (MD) is concerned. 
Common image scanners generate typically 16-bit 
Tagged Information File Format (TIFF) images. Therefore, 
the log-like transformed data have rarely over 16. On 
the other hand, raw data can have values more than 
thousands. Since the maximum value can be a good 
factor for the classification process, we include this 
feature.
  To determine the classification model, we adopted 
the logistic regression method with these features:

  nixxy ikki ,,1,,,11 KL =+++= ββα (2)

where y is defined as above and xk,i is the value of fea-
tures of ith GEO Sample data. k is the number of fea-
tures and n is the number of GEO Samples. The logistic 
regression has several strengths. 1) It is not restricted to 
data. 2) It can represent the model easily. 3) It can clas-
sify the data into each group with ease. 4) It finds the 
best explanatory variable. We can predict the class, 
log-like transformed or not for any GEO Sample data 
using the output computed by the model. If y is the 
positive value, the data is classified as log-like trans-
formed data. If y is the negative value, it is classified as 
not log-like transformed data.

Set-wise validation of classification result
10 Sample data excluded from 200 Sample data were 
used to validate the classification model. We performed 
classification of 10 data and case-study of its result. A 
GEO Series is a group of related GEO Samples. Thus, 
we can assume that Samples in a Series should be 
classified as same class. However, it is found that 
Samples are classified with different class in a Series. 
To solve this case, we adopted simple voting method 
and classified Samples in a Series as a class with which 
Samples are classified more.

GEO data update

As an amount of GEO data grows exponentially, we 
need to update the data continuously. For incremental 
update, we extract a list of GEO accession numbers 
and release date in our database. Next, if a new data 
is not in the list, we download, process, and store it into 
the database. To trace the update status, accession 
numbers of updated data and the updated date are 
written in a log file.
  Besides, authority of data in GEO changed often pub-
lic to private, and vice versa. We also recorded the ac-
cession numbers of the data in the log file. Update 
workflow is shown in Fig. 3. 

Results

Data field unification

In this section, we focused on constructing the mapping 
tables for each technology type and each manufacturer. 
Through a simple text-mining method and manual cura-
tion, we mapped the fields which are written in various 
strings into one representative field. Table 1 shows the 
example of words which have various strings for a 
concept.
  There are around 3,000 distinct fields in Platform and 
Sample Data tables respectively. Since most of the data 
fields are recorded irregularly, we have to unify them 
manually. On the other hand, the fields of dual channel 
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Table 4. GEO field mapping result

Entity
Technology 

type

Number of 

samples

Mapped 

fields
Total fields

Platform Spotted 

 DNA/cDNA

1,437 958 1,253

Spotted 

 oligonucleotide

748 462 817

In situ 

 oligonucleotide

687 218 387

Single 

 channel 

 sample

Spotted 

 DNA/cDNA

4,670 180 343

Spotted 

 oligonucleotide

3,217 85 97

In situ 

 oligonucleotide

431 16 21

Affymetrix 49,253 193 240

Dual 

 channel 

 sample

All 46,019 2,705 3,858

Table 5. Mapping GEO data elements into core database 

tables based on the MIAME standard

MIAME element GEO Entity GEO attribute

Experiment Series Title

Type

Summary

Overall design

PubMed ID

Web link

Biological samples, 

preparation extraction

and labeling

Sample Organism

Label

Label protocol

Extracted protocol

Extracted molecule

Growth protocol

Treatment protocol

Source

Biomaterial provider

Description

Characteristic

Array Platform Title

Distribution

Technology type

Manufacturer

Manufacturer Protocol

Catalog number

Coating

Support

Description

Hybridization Sample Hybridization Protocol

Description

Sample type

Measurement Sample Scan protocol

Data processing

in Sample are stored in partially regular pattern. We per-
formed a simple text mining method (exact match) and 
obtained a precision of 0.8474 (544/642), a recall of 
0.2011 (544/2,705), and the F-measure of 0.3248. 
Through its method was not reliable as the result 
shows, it was helpful to reduce a time-consuming 
process. The unification result is shown in Table 4.

Standard-based integration of heterogeneous 
microarray data

We designed a core relational database according to the 
MIAME standard-based format. In it, the GEO data is 
customized according to the result of mapping GEO at-
tributes to elements in each part of MIAME. A compre-
hensive view of mapping result is presented in Table 5.
  We mapped values of attributes in GEO (‘technology 
type’ in Platform, ‘type’ in Series, ‘Extracted molecule’ 
and ‘Label’ in Sample) into terms from MGED Ontology 
(TechnologyType, MethodologicalDesign and Experimen-
talFactor, and LabeledExtract class) respectively. Like 
data field unification process, we performed a simple 
text mining method. Among 4,495 values in GEO, 2,537 
values are mapped to MGED Ontology and 1,958 values 
are stored as they are. Other database tables have 
been implemented in order to collect data regarding all 
submitters, laboratories or organizations which take part 
in each experiment and to handle the case that a 
Sample included in multiple Series. All data regarding 
microarray experiment results (Data table) are stored in 
the additional database tables according to its trans-
formation characteristic.
  Finally, we hold 2,967 Platforms, 103,590 Samples 

(57,052 single channels and 46,538 dual channels) and 
4,867 Series in our database. In the database, we inves-
tigated the distribution of organism, source, and ex-
tracted molecule in microarray experiments (Table 6). 
The view of the results reflects that the most interesting 
experiments in the present researches have been con-
cerned with Homo sapiens. Moreover, it shows that the 
breast tissue is mostly used as a material for experi-
ments and that breast cancer is a matter of primary 
concern in cancer research. In a part of Extracted 
Molecule, the distribution means the data stored in GEO 
mainly result from array-based experiments in which re-
searches of transcriptional pattern is accomplished.

Data transformation classification

Classification using Logistic Regression model
The initial classification is done by logistic regression, 
which is used when users have a binary dependent 
variable. The training data set currently consists of 190 
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Table 8. Contingency table for data set in which different 

classification results for each sample in a series

Actual
Predicted

Total
Log-like Not Log

Log-like 2,896  257 3,153

Not log  325 1,398 1,723

Total 3,221 1,655 4,876

Table 9. Comparison of logistic regression model and 

mixed model with validation on data subset (DCS) and en-

tire data set

Measurement
Logistic regression

Logistic regression＋

voting

DCS Total DCS Total

Accuracy 0.8806 0.9940 0.9967 0.9998

Error rate 0.1194 0.0060 0.0033 0.0002

Sensitivity 0.9185 0.9954 0.9990 0.9999

Specificity 0.8114 0.9921 0.9925 0.9997

Precision 0.8991 0.9942 0.9959 0.9998

Recall 0.9185 0.9954 0.9990 0.9999

F-measure 0.9087 0.9948 0.9974 0.9999

Table 6. Distribution of top five ranked terms for organ-

ism, source, and extracted molecule

GEO feature Term Count

Organism Homo sapiens 53,989

Mus musculus 22,679

Rattus norvegicus 8,620

Saccharomyces cerevisiae 6,736

Arabidopsis thaliana 4,961

Source Breast tumor 1,691

Pool 1,484

DNA was obtained from NIGHS 

 Human Genetic Cell Repository

1,152

Breast 1,022

Lymphoblastoid cell line 769

Extracted 

 molecule

Total RNA 93,839

Genomic DNA 7,936

PolyA RNA 1,224

Protein 385

Other 204

Table 7. Contingency table for logistic regression learning 

result

Actual
Predicted

Total
Log-like Not Log

Log-like 96  0  96

Not Log  0 94  94

Total 96 94 190

examples.
  After learning process, we can obtain the classi-
fication model and the contingency table as a learning 
result (Table 7). As we can see the result, we obtained 
a sensitivity of 1.0 (96/96) and a specificity of 1.0 
(94/94). 

Set-wise validation
To test the classification model, we performed classi-
fication for the 10 Sample data excluded from 200 
Sample data which were sampled randomly to make 
training data set. We assumed that basically, Samples 
in a Series have same classification results. Among the 
10 classification results, however, we found a ques-
tionable result. Though two Samples are included in 
same Series, one was classified as Log-transformed da-
ta and the other was not. For the reason, we consid-
ered Series as a set and attempted the set-wise 
validation. 
  We applied our classification model to entire data set 
and extracted the data which correspond to ques-
tionable case. Entire data consist of 3,911 Series which 

include 97,026 Samples. The reason why the number of 
entire Samples is not 103.590 is that GEO Values of 
6,564 Samples have only ‘null’ string or zero value. 
As a result, we found 103 Series which include 4,876 
Samples. These data were classified by humans to vali-
date the classification model (Table 8).
  To solve this problem, we applied a simple voting 
method. For example, if the number of log-like trans-
formed class is more than that of not-log transformed 
one in a Series, all Samples in the Series are assigned 
to the log-like transformed class. If the number of 
log-like transformed class is equal to that of the not-log 
transformed one, all Samples are assigned to what they 
are classified as. We tested both the original classi-
fication model and a combination of the model and vot-
ing method on data sets differently classified in a Series 
(DCS) and entire data set, respectively. The results are 
presented in Table 9 with various evaluation measure-
ments. 
  As a result of classification for all GEO data, 56,012 
log-like transformed data and 41,014 not-log trans-
formed data are stored into separated database tables.

Query Interface

The integrated database can be queried on the World 
Wide Web at http://geo.snubi.org/~geoxperanto/html/ 
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Fig. 4. Query interface of an integrated database of GEO. 

Some of GEO terms are mapped to MGED Ontology. It 

makes it possible to search a categorized term.

GEORetrieval/GEORet_Inter.html (Fig. 4) This interface 
enables users to search hybridization-centered data. In 
comparison with free text search of GEO Entrez Search 
System, users can search the database efficiently due 
to partially itemized GEO terms.

Discussion
Some main issues of management in production of mi-
croarray experiments are the large amount of in-
formation produced and their heterogeneity. Therefore, it 
is important to make independently collected microarray 
data conform to standard for sharing of data efficiently 
and be comparable with each other. The MIAME stand-
ard can serve both bioinformaticians and biologists to 
deal with the former issue. To solve the latter issue, mi-
croarray data must be classified by transformation 
method. In the process of data classification, we found 
that a combination of a classification model and other 
method can boost the performance of classification 
(Chen et al., 2006). We have presented a simple but ef-
fective two-step method. It consists of a Logistic 
Regression model as well as a simple voting method.
Recently, it is clear that these datasets should be com-
bined to generate a more comprehensive understanding 
of underlying biology. With appropriate integration of 
heterogeneous microarray data in GEO into the stand-
ard-based database, improvement of analysis results 
and comparison of data from different experiments can 

be possible. Integration strategies we proposed allow 
the GEO to progress remarkably toward a more stand-
ardized repository and to serve as a more uniform plat-
form for microarray data analysis. Also, published re-
search studies using GEO data can be expanded and 
improved with our database and analysis approaches 
(Yoon et al., 2006) which have been published.
  Yet, we have some problem to solve further. In data 
field unification, we can not handle polysemy problem, 
which means the case that a word has many meanings. 
An important next step is to adapt natural language 
processing method to solve not only the problem but al-
so new terms which will be input in GEO. In set-wise 
validation of data transformation classification, we as-
sumed that all Samples in a Series have same classi-
fication results. This assumption may miss some case of 
a false positive result in a Series for entire data set. 
With human validation for entire data set, we can cor-
rect our validation result.
  At the conclusion, we suggest to data submitters that 
they submit their data with the correct description in the 
unified format to collaborate with researchers in other 
fields or to provide machine-readable data for computa-
tional post-analysis. The effort may lead to improve the 
computational analysis results for the discovery of re-
markable biological knowledge.
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