Recently, unstructured random data such as website logs, texts and tables etc, have been flooding in the internet. Among these unstructured data there are potentially very useful data such as bulletin boards and e-mails that are used for customer services and the output from search engines. Various text mining tools have been introduced to deal with those data. But most of them lack accuracy compared to traditional data mining tools that deal with structured data. Hence, it has been sought to find a way to apply data mining techniques to these text data. In this paper, we propose a text mining system which can incooperate existing data mining methods. We use text mining as a preprocessing tool to generate formatted data to be used as input to the data mining system. The output of the data mining system is used as feedback data to the text mining to guide further categorization. This feedback cycle can enhance the performance of the text mining in terms of accuracy. We apply this method to categorize web sites containing adult contents as well as illegal contents. The result shows improvements in categorization performance for previously ambiguous data.
Lee, Kyung-Ho;Park, Jong-Hoon;Choi, Young-Bok;Jang, Young-Hoon;Oh, June
Journal of the Society of Naval Architects of Korea
/
v.43
no.6
s.150
/
pp.700-706
/
2006
As development of information technology, companies stress the need of knowledge management. Companies construct ERP system including knowledge management. But, it is not easy to formalize knowledge in organization. They experience that constructing information system help knowledge management. Now, we focus on engineering knowledge. Because engineering data contains experts' experience and know-how in its own, engineering knowledge is a treasure house of knowledge. Korean shipyards are leader of world shipbuilding industry. They have accumulated a store of knowledge and data. But, they don't have data mining tool to utilize accumulated data. This paper treats development of data mining tools for the utilization of shipbuilding knowledge based on genetic programming(GP).
Korean Journal of Computational Design and Engineering
/
v.14
no.6
/
pp.382-389
/
2009
Recently, knowledge management has been required in companies as a tool of competitiveness. Companies have constructed Enterprise Resource Planning(ERP) system in order to manage huge knowledge. But, it is not easy to formalize knowledge in organization. We focused on data mining system by genetic programming(GP). Data mining system by genetic programming can be useful tools to derive and extract the necessary information and knowledge from the huge accumulated data. However when we don't have enough amounts of data to perform the learning process of genetic programming, we have to reduce input parameter(s) or increase number of learning or training data. In this study, an enhanced data mining method combining Genetic Programming with Self organizing map, that reduces the number of input parameters, is suggested. Experiment results through a prototype implementation are also discussed.
Journal of Korean Society of Industrial and Systems Engineering
/
v.25
no.3
/
pp.58-63
/
2002
The Internet, as a commercial tool, presented a new market that connects producers with consumers through the E-commerce. Now, E-commerce spreads over almost all industries through the Internet excluding some. This research indicates the reason why the E-commerce is not activated in agricultural Industry, which is less developed than other industries. And it suggests a good example of E-commerce on the agricultural products combining on and off line markets. In addition, data-mining technique is suggested to analyze whole information in system.
Journal of Korea Society of Industrial Information Systems
/
v.11
no.5
/
pp.236-244
/
2006
Many attempts have been made to track the web usage patterns and provide suggestions that might help web operators get the information they need. These tracking mechanisms rely on mining web log files for usage patterns. The purpose of this study is to verify a web agent prototype that was built for mining web log files. The web agent for this paper was made by Java and ASP and the agent came into being as part of a cookie for a short-term data storage. For long-term data storage, the agent used a My-SQL as a Data Base. This agent system could inform that if the data comes from the web data mining agent, it could be a rapid information providing method rather than the case of data coming into a data mining tool. Therefore, the developed tool in this study will be helpful as a new kind of decision making system and expert system.
Frans Prathama;Seokrae Won;Iq Reviessay Pulshashi;Riska Asriana Sutrisnowati
Journal of the Korea Society of Computer and Information
/
v.29
no.6
/
pp.101-112
/
2024
In this paper, we present EDF (Event Data Factory), an interactive tool designed to assist event log generation for process mining. EDF integrates various data connectors to improve its capability to assist users in connecting to diverse data sources. Our tool employs low-code/no-code technology, along with graph-based visualization, to help non-expert users understand process flow and enhance the user experience. By utilizing metadata information, EDF allows users to efficiently generate an event log containing case, activity, and timestamp attributes. Through log quality metrics, our tool enables users to assess the generated event log quality. We implement EDF under a cloud-based architecture and run a performance evaluation. Our case study and results demonstrate the usability and applicability of EDF. Finally, an observational study confirms that EDF is easy to use and beneficial, expanding small and medium-sized enterprises' (SMEs) access to process mining applications.
There are many investors in the stock market, and more and more people get interested in the stock investment. In order to avoid risks and make profit in the stock investment, we have to determine several aspects using various information. That is, we have to select profitable stocks and determine appropriate buying/selling prices and holding period. This paper proposes a data mining tool for the investors' decision support. The data mining tool makes stock investors apply machine learning techniques and generate stock price prediction model. Also it helps determine buying/selling prices and holding period. It supports individual investor's own decision making using past data. Using the proposed tool, users can manage stock data, generate their own stock price prediction models, and establish trading policy via investment simulation. Users can select technical indicators which they think affect future stock price. Then they can generate stock price prediction models using the indicators and test the models. They also perform investment simulation using proper models to find appropriate trading policy consisting of buying/selling prices and holding period. Using the proposed data mining tool, stock investors can expect more profit with the help of stock price prediction model and trading policy validated on past data, instead of with an emotional decision.
Park Myong-Hwa;Park Jeong-Sook;Kim Chong-Nam;Park Kyung-Min;Kwon Young-Sook
Journal of Korean Academy of Nursing
/
v.36
no.4
/
pp.652-661
/
2006
Purpose. The purposes of this study were to apply data mining tool to nursing specific knowledge discovery process and to identify the utilization of data mining skill for clinical decision making. Methods. Data mining based on rough set model was conducted on a large clinical data set containing NMDS elements. Randomized 1000 patient data were selected from year 1998 database which had at least one of the five most frequently used nursing diagnoses. Patient characteristics and care service characteristics including nursing diagnoses, interventions and outcomes were analyzed to derive the meaningful decision rules. Results. Number of comorbidity, marital status, nursing diagnosis related to risk for infection and nursing intervention related to infection protection, and discharge status were the predictors that could determine the length of stay. Four variables (age, impaired skin integrity, pain, and discharge status) were identified as valuable predictors for nursing outcome, relived pain. Five variables (age, pain, potential for infection, marital status, and primary disease) were identified as important predictors for mortality. Conclusions. This study demonstrated the utilization of data mining method through a large data set with stan dardized language format to identify the contribution of nursing care to patient's health.
Recently, studies about process mining for creating and analyzing business process models from log data have received much attention from BPM (Business Process Management) researchers. Process mining is a kind of method that extracts meaningful information and hidden rules from the event log of enterprise information systems such as ERP and BPM. In this paper, repair processes of electronic devices are analyzed using ProM which is a process mining tool. And based on the analysis of repair processes, the method for finding major failure patterns is proposed by multi-dimensional data analysis beyond simple statistics. By using the proposed method, the reliability of electronic device can be increased by providing the identified failure patterns to design team.
Database query and reporting tools, OLAP tools and data mining tools are typical front-end tools in Business Intelligence environment which is able to support gathering, consolidating and analyzing data produced from business operation activities and provide access to the result to enterprise's users. Traditional reporting tools have an advantage of creating sophisticated dynamic reports including SQL query result sets, which look like documents produced by word processors, and publishing the reports to the Web environment, but data source for the tools is limited to RDBMS. On the other hand, OLAP tools and data mining tools have an advantage of providing powerful information analysis functions on each own way, but built-in visualization components for analysis results are limited to tables or some charts. Thus, this paper presents a system that integrates three typical front-end tools to complement one another for BI environment. Traditional reporting tools only have a query editor for generating SQL statements to bring data from RDBMS. However, the reporting tool presented by this paper can extract data also from OLAP and data mining servers, because editors for OLAP and data mining query requests are added into this tool. Traditional systems produce all documents in the server side. This structure enables reporting tools to avoid repetitive process to generate documents, when many clients intend to access the same dynamic document. But, because this system targets that a few users generate documents for data analysis, this tool generates documents at the client side. Therefore, the tool has a processing mechanism to deal with a number of data despite the limited memory capacity of the report viewer in the client side. Also, this reporting tool has data structure for integrating data from three kinds of data sources into one document. Finally, most of traditional front-end tools for BI are dependent on data source architecture from specific vendor. To overcome the problem, this system uses XMLA that is a protocol based on web service to access to data sources for OLAP and data mining services from various vendors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.