• Title/Summary/Keyword: Data Imputation

Search Result 199, Processing Time 0.025 seconds

Two-stage imputation method to handle missing data for categorical response variable

  • Jong-Min Kim;Kee-Jae Lee;Seung-Joo Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.577-587
    • /
    • 2023
  • Conventional categorical data imputation techniques, such as mode imputation, often encounter issues related to overestimation. If the variable has too many categories, multinomial logistic regression imputation method may be impossible due to computational limitations. To rectify these limitations, we propose a two-stage imputation method. During the first stage, we utilize the Boruta variable selection method on the complete dataset to identify significant variables for the target categorical variable. Then, in the second stage, we use the important variables for the target categorical variable for logistic regression to impute missing data in binary variables, polytomous regression to impute missing data in categorical variables, and predictive mean matching to impute missing data in quantitative variables. Through analysis of both asymmetric and non-normal simulated and real data, we demonstrate that the two-stage imputation method outperforms imputation methods lacking variable selection, as evidenced by accuracy measures. During the analysis of real survey data, we also demonstrate that our suggested two-stage imputation method surpasses the current imputation approach in terms of accuracy.

A comparison of imputation methods using machine learning models

  • Heajung Suh;Jongwoo Song
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.331-341
    • /
    • 2023
  • Handling missing values in data analysis is essential in constructing a good prediction model. The easiest way to handle missing values is to use complete case data, but this can lead to information loss within the data and invalid conclusions in data analysis. Imputation is a technique that replaces missing data with alternative values obtained from information in a dataset. Conventional imputation methods include K-nearest-neighbor imputation and multiple imputations. Recent methods include missForest, missRanger, and mixgb ,all which use machine learning algorithms. This paper compares the imputation techniques for datasets with mixed datatypes in various situations, such as data size, missing ratios, and missing mechanisms. To evaluate the performance of each method in mixed datasets, we propose a new imputation performance measure (IPM) that is a unified measurement applicable to numerical and categorical variables. We believe this metric can help find the best imputation method. Finally, we summarize the comparison results with imputation performances and computational times.

arraylmpute: Software for Exploratory Analysis and Imputation of Missing Values for Microarray Data

  • Lee, Eun-Kyung;Yoon, Dan-Kyu;Park, Tae-Sung
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.129-132
    • /
    • 2007
  • arraylmpute is a software for exploratory analysis of missing data and imputation of missing values in microarray data. It also provides a comparative analysis of the imputed values obtained from various imputation methods. Thus, it allows the users to choose an appropriate imputation method for microarray data. It is built on R and provides a user-friendly graphical interface. Therefore, the users can easily use arraylmpute to explore, estimate missing data, and compare imputation methods for further analysis.

A Computational Intelligence Based Online Data Imputation Method: An Application For Banking

  • Nishanth, Kancherla Jonah;Ravi, Vadlamani
    • Journal of Information Processing Systems
    • /
    • v.9 no.4
    • /
    • pp.633-650
    • /
    • 2013
  • All the imputation techniques proposed so far in literature for data imputation are offline techniques as they require a number of iterations to learn the characteristics of data during training and they also consume a lot of computational time. Hence, these techniques are not suitable for applications that require the imputation to be performed on demand and near real-time. The paper proposes a computational intelligence based architecture for online data imputation and extended versions of an existing offline data imputation method as well. The proposed online imputation technique has 2 stages. In stage 1, Evolving Clustering Method (ECM) is used to replace the missing values with cluster centers, as part of the local learning strategy. Stage 2 refines the resultant approximate values using a General Regression Neural Network (GRNN) as part of the global approximation strategy. We also propose extended versions of an existing offline imputation technique. The offline imputation techniques employ K-Means or K-Medoids and Multi Layer Perceptron (MLP)or GRNN in Stage-1and Stage-2respectively. Several experiments were conducted on 8benchmark datasets and 4 bank related datasets to assess the effectiveness of the proposed online and offline imputation techniques. In terms of Mean Absolute Percentage Error (MAPE), the results indicate that the difference between the proposed best offline imputation method viz., K-Medoids+GRNN and the proposed online imputation method viz., ECM+GRNN is statistically insignificant at a 1% level of significance. Consequently, the proposed online technique, being less expensive and faster, can be employed for imputation instead of the existing and proposed offline imputation techniques. This is the significant outcome of the study. Furthermore, GRNN in stage-2 uniformly reduced MAPE values in both offline and online imputation methods on all datasets.

Non-Response Imputation for Panel Data (패널자료의 무응답 대체법)

  • Pak, Gi-Deok;Shin, Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.899-907
    • /
    • 2010
  • Several non-response imputation methods are suggested, however, mainly cross-sectional imputations are studied and applied to this analysis. A simple and common imputation method for panel data is the cross-wave regression imputation or carry-over imputation as a special case of cross-wave regression imputation. This study suggests a multiple imputation method combined time series analysis and cross-sectional multiple imputation method. We compare this method and the cross-wave regression imputation method using MSE, MAE, and Bias. The 2008 monthly labor survey data is used for this study.

Comparative Study on Imputation Procedures in Exponential Regression Model with missing values

  • Park, Young-Sool;Kim, Soon-Kwi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.143-152
    • /
    • 2003
  • A data set having missing observations is often completed by using imputed values. In this paper, performances and accuracy of five imputation procedures are evaluated when missing values exist only on the response variable in the exponential regression model. Our simulation results show that adjusted exponential regression imputation procedure can be well used to compensate for missing data, in particular, compared to other imputation procedures. An illustrative example using real data is provided.

  • PDF

Imputation Procedures in Exponential Regression Analysis in the presence of missing values

  • Park, Young-Sool
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.135-144
    • /
    • 2003
  • A data set having missing observations is often completed by using imputed values. In this paper, performances and accuracy of five imputation procedures are evaluated when missing values exist only on the response variable in the exponential regression model. Our simulation results show that adjusted exponential regression imputation procedure can be well used to compensate for missing data, in particular, compared to other imputation procedures. An illustrative example using real data is provided.

  • PDF

Missing Value Imputation based on Locally Linear Reconstruction for Improving Classification Performance (분류 성능 향상을 위한 지역적 선형 재구축 기반 결측치 대치)

  • Kang, Pilsung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.4
    • /
    • pp.276-284
    • /
    • 2012
  • Classification algorithms generally assume that the data is complete. However, missing values are common in real data sets due to various reasons. In this paper, we propose to use locally linear reconstruction (LLR) for missing value imputation to improve the classification performance when missing values exist. We first investigate how much missing values degenerate the classification performance with regard to various missing ratios. Then, we compare the proposed missing value imputation (LLR) with three well-known single imputation methods over three different classifiers using eight data sets. The experimental results showed that (1) any imputation methods, although some of them are very simple, helped to improve the classification accuracy; (2) among the imputation methods, the proposed LLR imputation was the most effective over all missing ratios, and (3) when the missing ratio is relatively high, LLR was outstanding and its classification accuracy was as high as the classification accuracy derived from the compete data set.

An Imputation for Nonresponses in the Survey on the Rural Living Indicators (농촌생활지표조사에서 무응답 대체 : 사례)

  • Cho, Young-Sook;Chun, Young-Min;Hwang, Dae-Yong
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.1
    • /
    • pp.95-107
    • /
    • 2008
  • Survey on the rural living indicators was the statistic approved from National Statistical Office and the survey executed by rural resources development institute. This study was used the raw data of survey on the rural living indicators in 2005. After editing procedure for raw data, we were studied 1,582 households which is acquired through elimination of case included nonresponses, and imputed a nonresponses of 15 item selected from 146 item. The imputation methods and efficiency of imputation for simulation was adapted differently from type of data. For continuous data, we imputed the nonresponses with mean imputation, regression imputation, adjusted grey-based k-NN imputation(DU, DW, WU, WW) and compared the results with RMSE. For categorical data, we imputed the nonresponses with mode method, probability imputation, conditional mode method, conditional probability method, hot-deck imputation, and compared the results with Accuracy. By the results, regression imputation and adjusted grey-based k-NN imputation appropriated for continuous data and hot-deck imputation appropriated for categorical data.

Application of discrete Weibull regression model with multiple imputation

  • Yoo, Hanna
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.3
    • /
    • pp.325-336
    • /
    • 2019
  • In this article we extend the discrete Weibull regression model in the presence of missing data. Discrete Weibull regression models can be adapted to various type of dispersion data however, it is not widely used. Recently Yoo (Journal of the Korean Data and Information Science Society, 30, 11-22, 2019) adapted the discrete Weibull regression model using single imputation. We extend their studies by using multiple imputation also with several various settings and compare the results. The purpose of this study is to address the merit of using multiple imputation in the presence of missing data in discrete count data. We analyzed the seventh Korean National Health and Nutrition Examination Survey (KNHANES VII), from 2016 to assess the factors influencing the variable, 1 month hospital stay, and we compared the results using discrete Weibull regression model with those of Poisson, negative Binomial and zero-inflated Poisson regression models, which are widely used in count data analyses. The results showed that the discrete Weibull regression model using multiple imputation provided the best fit. We also performed simulation studies to show the accuracy of the discrete Weibull regression using multiple imputation given both under- and over-dispersed distribution, as well as varying missing rates and sample size. Sensitivity analysis showed the influence of mis-specification and the robustness of the discrete Weibull model. Using imputation with discrete Weibull regression to analyze discrete data will increase explanatory power and is widely applicable to various types of dispersion data with a unified model.