• Title/Summary/Keyword: Data Exposure

Search Result 2,721, Processing Time 0.026 seconds

Consideration of Nano-Measurement Strategy (나노물질의 측정전략의 주요 쟁점)

  • Yoon, Chung-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.1
    • /
    • pp.73-79
    • /
    • 2011
  • The growing interest in nanotechnology has resulted in increasing concern and a number of published environmental and workplace measurements for assessing occupational exposure to engineered nanomaterials. However, the amount of previous exposure data remains limited. Furthermore the data available was collected with extensive variation in terms of exposure measurement strategy, which limits the ability to pool the data in the future. In response, this paper reviewed several pertinent issues related to exposure measurement strategy to suggest a harmonized measurement strategy which would make exposure data more useful in the future, e.g. correlation between exposure metrics, relationship between activity and exposure, task-based or shift-based assessment, background concentration, limitation of personal exposure monitoring and other determinants of exposure/modeling. An improved sampling strategy for nanomaterial exposure assessment should be considered in order to maximize the use of the data from various real time monitoring instruments.

Different Characteristics of Toxic Substance/poison Exposure Data that Collected from Pre-hospital Telephone Response and Emergency Department (일부 지역의 전화상담을 통해 얻어진 독성물질 노출정보와 응급실 기반 중독 정보 분석)

  • Kim, Su-Jin;Choa, Min-Hong;Park, Jong-Su;Lee, Sung-Woo;Hong, Yun-Sik
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Purpose: The purpose of this study is to find differences in the demographics of toxic exposed patients and substance between call based poison information data and hospital based poison information data. Methods: Seoul 1339 call-response data were used as call based poison data and toxic related injury surveillance data of the Korean center for disease control and prevention (KCDC) were used as hospital based poison data. Age, sex, the kind of exposed substance, reasons for exposure, and exposure routes were compared between two data sets. We analyzed the presence or not of documentation on the name and amount of exposed substance, symptoms after exposure in call based poison data. Results: Seoul1339 poison data included a total of 2260 information related to toxic exposure and KCDC poison data included 5650 poison cases. There was no difference in sexual distribution. Pediatric exposure and accidental exposure were more common in call based poison data. The most common exposed substances were household products in call based poison data and medicines in hospital based poison data, respectively. Documents regarding amount and time of toxic exposure and symptoms after toxic exposure were not recorded exactly in call based poison data. Conclusion: There were significant differences in age, reasons for toxic exposure, and the kinds of exposed substances. Poison information data from both pre-hospital and hospital must be considered.

  • PDF

Overview of the Development of the Korean Exposure Factors Handbook

  • Jang, Jae-Yeon;Jo, Soo-Nam;Kim, So-Yeon;Myung, Hyung-Nam
    • Journal of Preventive Medicine and Public Health
    • /
    • v.47 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • A set of exposure factors that reflects the characteristics of individual behavior capable of influencing exposure is essential for risk and exposure assessment. In 2007, the Korean Exposure Factors Handbook was, therefore, issued, driven by the need to develop reliable exposure factors representing the Korean population. The purpose of this study was to overview the development process of the Korean Exposure Factors Handbook and major recommended exposure values for the Korean population to allow information exchanges and comparison of recommended values among nations. The researchers reviewed the domestic data that could be used in the development of exposure factors, confirmed a knowledge gap, and set a priority of development by phases. A methodology to measure exposure factors was established to develop measuring techniques and test their validity. Data were processed or a survey was conducted according to the availability of data. The study thus produced recommended values for 24 exposure factors grouped by general exposure factors, food ingestion factors, and activity factors by setting up a database of exposure factors and carrying out statistical analysis. The study has significantly contributed to reducing the potential uncertainty of the risk and exposure assessment derived by the application of foreign data or research findings lacking representativeness or grounds by developing a set of exposure factors reflecting the characteristics of the Korean people. It will be necessary to conduct revisions in light of the changing statistical values of national data and the exposure factors based on Korean characteristics.

Radiation image mapping system (방사선 영상 매핑 장치)

  • 최영수;박순용;이종민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1884-1887
    • /
    • 1997
  • The increasing concern over radiation exposure in the nuclear industry has fostered agrressive efforts to reduce the levels of radiation exposure. One area of the effot to reduce the radiation exposure is the development of a remote radiation monitoring system. Remote radiation monitoring can serve many benificaial functions reduce exposure to radiation by plant personnel, impruve the quality of the data that is collected and recognize the radiation environment easily. Radiation mapping system gives a good information that represents radiation level distribution. The system we have developed consists of a data acquistion parts, mobile robot and remote control parts. Data acquisition parts consist of radiation detection module and vision acquistion module which collect radiation data, visiion data and distance information. In remote control parts, the acquision data are processed and displayed. We have constructed radiation mapping image by overlaying the vision and radiation data. The radiation mapping techniques for displaying the results of the survey in an easily comprehendable form will facilitate a better understanding of the radiation environment in the facility. This system can reduce workers radiation exposure and aid to help work plan, so it has significant benifits in cost and safety.

  • PDF

Development and Validation of Exposure Models for Construction Industry: Tier 2 Model (건설업 유해화학물질 노출 모델의 개발 및 검증: Tier-2 노출 모델)

  • Kim, Seung Won;Jang, Jiyoung;Kim, Gab Bae
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.219-228
    • /
    • 2014
  • Objectives: The major objective of this study was to develop a tier 2 exposure model combining tier 1 exposure model estimates and worker monitoring data and suggesting narrower exposure ranges than tier 1 results. Methods: Bayesian statistics were used to develop a tier 2 exposure model as was done for the European Union (EU) tier 2 exposure models, for example Advanced REACH Tools (ART) and Stoffenmanager. Bayesian statistics required a prior and data to calculate the posterior results. In this model, tier 1 estimated serving as a prior and worker exposure monitoring data at the worksite of interest were entered as data. The calculation of Bayesian statistics requires integration over a range, which were performed using a Riemann sum algorithm. From the calculated exposure estimates, 95% range was extracted. These algorithm have been realized on Excel spreadsheet for convenience and easy access. Some fail-proof features such as locking the spreadsheet were added in order to prevent errors or miscalculations derived from careless usage of the file. Results: The tier 2 exposure model was successfully built on a separate Excel spreadsheet in the same file containing tier 1 exposure model. To utilize the model, exposure range needs to be estimated from tier 1 model and worker monitoring data, at least one input are required. Conclusions: The developed tier 2 exposure model can help industrial hygienists obtain a narrow range of worker exposure level to a chemical by reflecting a certain set of job characteristics.

Evaluation of Lead Exposure Characteristics Using Domestic Occupational Exposure Literature Data (납에 대한 국내 직업적 노출 문헌 자료 고찰을 통한 노출 특성 평가)

  • Choi, Sangjun;Seo, Sung Chul;Park, Ju-Hyun;Koh, Dong-Hee;Kim, Hwan-Cheol;Park, Donguk;Choi, Hee Eun;Sung, Yeji;Oh, Se-Eun;Ko, Kyoung Yoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Objectives: The purpose of this study is to evaluate exposure characteristics of lead using data from the domestic occupational exposure literature. Methods: Occupational airborne exposure data on lead reported in the domestic literature from 1981 to 2018 were collected and re-analyzed. The exposure levels in the data were expressed as an estimated arithmetic mean and a weighted arithmetic mean (WAM) of the number of samples. Lead exposure characteristics were analyzed by industry, process, and year. Results: From a total of 14 documents, 8,305 airborne lead measurements for 17 industries were identified, and the WAM concentration in eight industries exceeded the occupational exposure limit of 50 ㎍/m3. Three industries (battery manufacturing, lead smelting, and litharge manufacturing) accounted for 95% of the total data, and exposure trends could be confirmed over 10 years. Exposure levels continue to decrease in all three industries. Conclusions: Considering the distribution outlook of lead and lead compounds, the main management targets are lead storage battery manufacturing and secondary smelting for lead regeneration.

Development and Validation of Exposure Models for Construction Industry: Tier 1 Model (건설업 유해화학물질 노출 모델의 개발 및 검증: Tier-1 노출 모델)

  • Kim, Seung Won;Jang, Jiyoung;Kim, Gab Bae
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.208-218
    • /
    • 2014
  • Objectives: The major objective of this study was to develop and validate a tier 1 exposure model utilizing worker exposure monitoring data and characteristics of worker activities routinely performed at construction sites, in order to estimate worker exposures without sampling. Methods: The Registration, Evaluation, Authorization and Restriction of Chemicals(REACH) system of the European Union(EU) allows the usage of exposure models for anticipating chemical exposure of manufacturing workers and consumers. Several exposure models have been developed such as Advanced REACH Tools(ART). The ART model is based on structured subjective assessment model. Using the same framework, a tier 1 exposure model has been developed. Worker activities at construction sites have been analyzed and modifying factors have been assigned for each activity. Korean Occupational Safety and Health Agency(KOSHA) accrued work exposure monitoring data for the last 10 years, which were retrieved and converted into exposure scores. A separate set of sampling data were collected to validate the developed exposure model. These algorithm have been realized on Excel spreadsheet for convenience and easy access. Results: The correlation coefficient of the developed model between exposure scores and monitoring data was 0.36, which is smaller than those of EU models(0.6~0.7). One of the main reasons explaining the discrepancy is poor description on worker activities in KOSHA database. Conclusions: The developed tier 1 exposure model can help industrial hygienists judge whether or not air sampling is required or not.

Ultrafine Particle Toxicities, Current Measurement Techniques and Controls (Ultrafine Particle의 독성, 측정방법 및 관리)

  • Lee, Su-Gil;Kim, Seong-Soo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.3
    • /
    • pp.203-215
    • /
    • 2010
  • This study is an overview of toxicities and measurement techniques of ultrafine particles (UFPs), and their exposure controls. UFPs are ubiquitous in many working situations. Exposure to UFPs is possibly causing adverse health symptoms including cardio-respiratory disease to humans. In order to measure exposure levels of airborne UFPs, there are current available measurement guidelines, instruments and other techniques (i.e. contour mapping, control banding). However, these risk assessment techniques including measurement techniques, controls and guidelines are dependent on background levels, metrics (e.g. size, mass, number, surface area, composition), environmental conditions and controls. There are no standardized measurement methods available and no generic and specific occupational exposure standards for UFPs. It is thought that there needs to be more effort to develop Regulations and Exposure Standards for generic UFPs should be based on more exposure data, health surveys, toxicological data and epidemiological data. A carefully considered hierarchy of controls can also reduce the maximum amount of airborne UFPs being emitted from diverse sources in industries.

Survey on Annual Excess Trend for Permissible Exposure Limit of Trichloroethylene (트리클로로에틸렌의 허용기준 적용에 따른 연도별 초과 경향 연구)

  • Kim, Ki-Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.1
    • /
    • pp.21-26
    • /
    • 2019
  • Objective: The aim of this study is to analyze an excess trend for domestic permissible exposure limit of trichloroethylene based on previous literature review. Materials and Methods: The research object is a trichloroethylene among 13 chemical substances regulated with PEL(Permissible Exposure Limit) in Occupational Safety and Health Act. The information utilized from this study is the work environment measurement data from 2004 to 2013. The highest level among concentration data measured at various workplaces was selected as a representative value through data process. N.D. (Not Detected) data was considered as 1/2 of LOD(Limit Of Detection). Results: Among work environment measurement data between 2004 and 2013, the highest number of excess workplace and excess rate(24 sites & 1.15%) was observed in 2008's data when applying the PEL(50 ppm) of trichloroethylene. When they are compared with the ACGIH's TLV-TWA(10 ppm), 2008's data showed the highest number of excess workplace and excess rate(175 sites & 8.37%). The number of excess workplace and excess rate related to PEL of trichloroethylene showed increase trend in 2005 but tended to decrease after 2008. Conclusions: Based on the results obtained from this study, the exposure level of trichloroethylene in case of domestic workers is not considered as a safe phase regardless of the year of work environment measurement year. Thus, a strictly preventive management in workplace should be provided for reducing exposure level of trichloroethylene.

Real-time Beam Exposure Time Control of Holographic Data Storage (홀로그래픽 저장장치의 실시간 광 노출시간 제어)

  • Han, Cho-Lok;Kim, Nak-Yeong;Song, Hee-Chan;Lim, Sung-Yong;Park, No-Cheol;Park, Young-Pil;Yang, Hyun-Seok
    • Transactions of the Society of Information Storage Systems
    • /
    • v.6 no.2
    • /
    • pp.63-67
    • /
    • 2010
  • Holographic data storage system is one of next generation high density optical memories. Thereby storing multiple data pages using multiplexing method in one spot, we can achieve high store density and fast access time. However, for uniform writing, we must control exposure time properly by the change of writing material characteristics. Many studies have been investigated about exposure time scheduling. However, once it is decided, we cannot change the scheduled time. Therefore, it is hard to obtain uniform data intensity. In this study, we propose exposure time control method using additional red beam as the monitoring signal. Through reconstructed red beam intensity in real time, we can adjust exposure time by the writing condition change. We construct compensation method mathematically and verify the feasibility of proposed method through the experiments.