• 제목/요약/키워드: Data Collection Model

검색결과 1,045건 처리시간 0.037초

무선 센서 네트워크에서 동적 클러스터 유지 관리 방법을 이용한 에너지 효율적인 주기적 데이터 수집 (An Energy-Efficient Periodic Data Collection using Dynamic Cluster Management Method in Wireless Sensor Network)

  • 윤상훈;조행래
    • 대한임베디드공학회논문지
    • /
    • 제5권4호
    • /
    • pp.206-216
    • /
    • 2010
  • Wireless sensor networks (WSNs) are used to collect various data in environment monitoring applications. A spatial clustering may reduce energy consumption of data collection by partitioning the WSN into a set of spatial clusters with similar sensing data. For each cluster, only a few sensor nodes (samplers) report their sensing data to a base station (BS). The BS may predict the missed data of non-samplers using the spatial correlations between sensor nodes. ASAP is a representative data collection algorithm using the spatial clustering. It periodically reconstructs the entire network into new clusters to accommodate to the change of spatial correlations, which results in high message overhead. In this paper, we propose a new data collection algorithm, name EPDC (Energy-efficient Periodic Data Collection). Unlike ASAP, EPDC identifies a specific cluster consisting of many dissimilar sensor nodes. Then it reconstructs only the cluster into subclusters each of which includes strongly correlated sensor nodes. EPDC also tries to reduce the message overhead by incorporating a judicious probabilistic model transfer method. We evaluate the performance of EPDC and ASAP using a simulation model. The experiment results show that the performance improvement of EPDC is up to 84% compared to ASAP.

Analysis Model Evaluation based on IoT Data and Machine Learning Algorithm for Prediction of Acer Mono Sap Liquid Water

  • Lee, Han Sung;Jung, Se Hoon
    • 한국멀티미디어학회논문지
    • /
    • 제23권10호
    • /
    • pp.1286-1295
    • /
    • 2020
  • It has been increasingly difficult to predict the amounts of Acer mono sap to be collected due to droughts and cold waves caused by recent climate changes with few studies conducted on the prediction of its collection volume. This study thus set out to propose a Big Data prediction system based on meteorological information for the collection of Acer mono sap. The proposed system would analyze collected data and provide managers with a statistical chart of prediction values regarding climate factors to affect the amounts of Acer mono sap to be collected, thus enabling efficient work. It was designed based on Hadoop for data collection, treatment and analysis. The study also analyzed and proposed an optimal prediction model for climate conditions to influence the volume of Acer mono sap to be collected by applying a multiple regression analysis model based on Hadoop and Mahout.

대기 고도에 따른 입자 포집용 관성 임팩터의 설계 및 포집효율 예측 (Numerical Simulation of Impactor Collection Efficiency according to Altitude)

  • 김규호;육세진;안강호
    • 한국입자에어로졸학회지
    • /
    • 제8권1호
    • /
    • pp.1-8
    • /
    • 2012
  • In this study, the collection efficiency of inertial impactors was numerically simulated by employing the statistical Lagrangian particle tracking(SLPT) model. The SLPT model was proven to be correct in predicting the impactor collection efficiency, when the numerically obtained collection efficiencies were compared with the experimental data of Marple et al.(1987) at normal pressure level and the experimental data of $Marjam{\ddot{a}}ki$ et al.(2000) at low pressure level. Based on the validation results, balloon-borne impactors with the cut-off sizes of $1{\mu}m$, $2.5{\mu}m$, and $10{\mu}m$ were designed. Then, the sampling flowrates of the inertial impactors, required to keep the cut-off sizes constant at different pressures and temperatures, were estimated according to the altitude.

우수 이용을 위한 포집재료별 포집수량과 수질에 관한 연구 (A Study on Quantity and Quality of Collected Rainwater by Collected Materials)

  • 이영복;이승근;왕창근
    • 상하수도학회지
    • /
    • 제18권1호
    • /
    • pp.66-72
    • /
    • 2004
  • In this study, quantity and quality of collected rainwater by sand, gravel, soil, lawn and concrete surface, as collection materials were investigated and Rainwater Collection Prediction Model was developed to predict the amount of collected rainwater. The quantity of collected rainwater in concrete surface, gravel, sand, soil and lawn collection system was 1,067L(93.2%), 1,006L(87.8%), 902L(78.8%), 800L(69.9%), 788.5L(68.8%) for 8 months period, respectively. The average turbidity of collected rainwater in concrete surface, gravel, sand, soil and lawn collection system was 3.2NTU, 2.2NTU, 1.9NTU, 1.7NTU, 1.5NTU for 8 months period, respectively. For sand collection material, predicted amount by the Model and actual collected amount were 931.5L and 902L, which were very closed. For gravel collection material, predicted amount by Model and actual collected amount were 1,028.21. and 1,006L, which were very closed. To simulate the optimal rainwater storage volume, the rainfall and evaporation data in Dae-jeon city were used. For sand collection system with 30m2 area, the maximum storage volume was $17m^3$ and 62% of the year was secured for use of 240L/day.

명세 기반 인공지능 학습 데이터 수집 방법 (A Specification-Based Methodology for Data Collection in Artificial Intelligence System)

  • 김동기;최병기;이재호
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권11호
    • /
    • pp.479-488
    • /
    • 2022
  • 최근 기계학습 기술이 빠르게 발전함에 따라 지능형 시스템을 구성하는 여러 기술 중에서 인지, 추론 및 판단, 행위와 같은 분야에서 기계학습을 활용한 연구가 활발히 이루어지고 있다. 이러한 기계학습을 활용하기 위해서는 학습을 위한 데이터의 구축이 필수적이다. 하지만 데이터가 생성되는 환경에 따라 생성되는 데이터의 종류가 다양하고, 기계학습에 활용할 학습모델에 따라 요구되는 데이터의 종류와 양식이 다르다. 이로 인해 새로운 환경에서 기존의 데이터 수집 방법을 재사용하지 못하고 매번 특화된 데이터 수집 모듈을 개발해야 한다는 문제가 있다. 본 논문에서는 위와 같은 문제를 해결하기 위해 명세 기반 인공지능 데이터 수집 방법을 제안하여 데이터 수집 환경에 따른 데이터 수집 방법의 재사용성을 확보하고, 데이터 수집 기능 구현을 자동화할 수 있는 방법을 제시하고자 한다.

Non-Linear Error Identifier Algorithm for Configuring Mobile Sensor Robot

  • Rajaram., P;Prakasam., P
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1201-1211
    • /
    • 2015
  • WSN acts as an effective tool for tracking the large scale environments. In such environment, the battery life of the sensor networks is limited due to collection of the data, usage of sensing, computation and communication. To resolve this, a mobile robot is presented to identify the data present in the partitioned sensor networks and passed onto the sink. In novel data collection algorithm, the performance of the data collecting operation is reduced because mobile robot can be used only within the limited range. To enhance the data collection in a changing environment, Non Linear Error Identifier (NLEI) algorithm has been developed and presented in this paper to configure the robot by means of error models which are non-linear. Experimental evaluation has been conducted to estimate the performance of the proposed NLEI and it has been observed that the proposed NLEI algorithm increases the error correction rate upto 42% and efficiency upto 60%.

Modeling Age-specific Cancer Incidences Using Logistic Growth Equations: Implications for Data Collection

  • Shen, Xing-Rong;Feng, Rui;Chai, Jing;Cheng, Jing;Wang, De-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권22호
    • /
    • pp.9731-9737
    • /
    • 2014
  • Large scale secular registry or surveillance systems have been accumulating vast data that allow mathematical modeling of cancer incidence and mortality rates. Most contemporary models in this regard use time series and APC (age-period-cohort) methods and focus primarily on predicting or analyzing cancer epidemiology with little attention being paid to implications for designing cancer registry, surveillance or evaluation initiatives. This research models age-specific cancer incidence rates using logistic growth equations and explores their performance under different scenarios of data completeness in the hope of deriving clues for reshaping relevant data collection. The study used China Cancer Registry Report 2012 as the data source. It employed 3-parameter logistic growth equations and modeled the age-specific incidence rates of all and the top 10 cancers presented in the registry report. The study performed 3 types of modeling, namely full age-span by fitting, multiple 5-year-segment fitting and single-segment fitting. Measurement of model performance adopted adjusted goodness of fit that combines sum of squred residuals and relative errors. Both model simulation and performance evalation utilized self-developed algorithms programed using C# languade and MS Visual Studio 2008. For models built upon full age-span data, predicted age-specific cancer incidence rates fitted very well with observed values for most (except cervical and breast) cancers with estimated goodness of fit (Rs) being over 0.96. When a given cancer is concerned, the R valuae of the logistic growth model derived using observed data from urban residents was greater than or at least equal to that of the same model built on data from rural people. For models based on multiple-5-year-segment data, the Rs remained fairly high (over 0.89) until 3-fourths of the data segments were excluded. For models using a fixed length single-segment of observed data, the older the age covered by the corresponding data segment, the higher the resulting Rs. Logistic growth models describe age-specific incidence rates perfectly for most cancers and may be used to inform data collection for purposes of monitoring and analyzing cancer epidemic. Helped by appropriate logistic growth equations, the work vomume of contemporary data collection, e.g., cancer registry and surveilance systems, may be reduced substantially.

SVM을 이용한 음성채팅시스템의 성능 향상 방법 (Performance Improvement Methods of a Spoken Chatting System Using SVM)

  • 안혁주;이성희;송영길;김학수
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권6호
    • /
    • pp.261-268
    • /
    • 2015
  • 음성채팅시스템에서 사용자의 음성 질의는 자동음성인식기를 통하여 텍스트 질의로 변환된다. 만약 자동음성인식기의 1순위 결과가 틀린다면 이 오류는 그대로 음성채팅시스템에 전파된다. 자동음성인식기의 1순위 정밀도를 향상시키기 위하여 본 논문에서는 RankSVM을 이용하여 자동음성인식기의 n개 결과를 재순위화하는 후처리 모델을 제안한다. 채팅시스템을 학습하기 위해서는 대용량의 채팅 문장들이 필요하다. 만약 새로운 채팅 문장들이 학습데이터에 자주 추가되지 않는다면 채팅시스템의 응답은 금방 진부해질 것이다. 이러한 문제를 해결하기 위하여 본 논문에서는 SVM을 이용하여 TV와 영화 시나리오로부터 채팅 문장들을 자동으로 선택하는 데이터 수집 모델을 제안한다. 실험에서 제안된 후처리 모델은 후처리를 하지 않은 모델보다 정확률에서 4.4%, 재현율에서 6.4% 더 좋은 결과를 보였다. 그리고 제안된 데이터 수집 모델은 98.95%의 높은 정확률과 57.14%의 재현율을 보였다.

영농폐비닐 수거율 결정요인 분석 (An Analysis of the Determinants of the Collection Rate of Agricultural Plastic Waste)

  • 이우엘;안동환
    • 농촌계획
    • /
    • 제25권3호
    • /
    • pp.11-18
    • /
    • 2019
  • It is widely known that agricultural plastic waste incineration by farmers may cause big forest fire or fine dust in rural areas. Hence, how to increase the rate of collection and recycling of the agricultural plastic waste is of concern to policy makers especially for rural environment. The purpose of this study is to find the determinants of the collection rate of agricultural plastic waste. This study used the data from 'Research on Agricultural Waste' by the Korea Environment Corporation from year 2012 to 2015 for 163 regions. This study found that the compensation rate for collection, the frequency of collecting services, and the quality of waste are important to increase the collection rate. And the regions with more elderly and low income people are more likely to have higher collection rate. Finally, the chief producing regions that are specialized in a certain crop shows higher collection rate.

Implementation of AIoT Edge Cluster System via Distributed Deep Learning Pipeline

  • Jeon, Sung-Ho;Lee, Cheol-Gyu;Lee, Jae-Deok;Kim, Bo-Seok;Kim, Joo-Man
    • International journal of advanced smart convergence
    • /
    • 제10권4호
    • /
    • pp.278-288
    • /
    • 2021
  • Recently, IoT systems are cloud-based, so that continuous and large amounts of data collected from sensor nodes are processed in the data server through the cloud. However, in the centralized configuration of large-scale cloud computing, computational processing must be performed at a physical location where data collection and processing take place, and the need for edge computers to reduce the network load of the cloud system is gradually expanding. In this paper, a cluster system consisting of 6 inexpensive Raspberry Pi boards was constructed to perform fast data processing. And we propose "Kubernetes cluster system(KCS)" for processing large data collection and analysis by model distribution and data pipeline method. To compare the performance of this study, an ensemble model of deep learning was built, and the accuracy, processing performance, and processing time through the proposed KCS system and model distribution were compared and analyzed. As a result, the ensemble model was excellent in accuracy, but the KCS implemented as a data pipeline proved to be superior in processing speed..