• Title/Summary/Keyword: Damping property

Search Result 198, Processing Time 0.028 seconds

Performance improvement of a vehicle suspension by sensitivity analysis (민간도해석에 의한 자동차 현가장치의 성능개선에 관한 연구)

  • Song, Chuck-Gee;Park, Ho;Oh, Jae-Eung;Yum, Sung-Ha
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1464-1473
    • /
    • 1990
  • Optimal design parameters are estimated from the sensitivity function and performance index variation. Suspension design modification for performance improvement and basic materials for practical applications are presented. The linear quarter model of a vehicle suspension is analyzed in order to represent the utilities of sensitivity analysis, and sensitivity function is determined in the frequency domain. The change of frequency response function is predicted, which depends on the design parameter variation and the property is verified by computer simulation. As an investigation results of sensitivity function for the vibrational amplitude of sprung mass to road profile input, it is shown that the most sensitive parameters are the suspension damping and the suspension stiffness. In order to identify the effects of these two parameters to the performance of suspension system, the performance index variation according to the changes of parameters is considered and then optimal design parameters are determined. It is verified that the system response is improved noticeably in the both of frequency and time domain after the design modification with the optimal parameters.

Analysis and Design of a Pneumatic Vibration Isolation System: Part I. Modeling and Algorithm for Transmissibility Calculation (공압 제진 시스템의 해석과 설계: I. 모델링과 전달율 계산 알고리즘)

  • Moon Jun Hee;Pahk Heui Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.127-136
    • /
    • 2004
  • This paper is the first of two companion papers concerning the analysis and design of a pneumatic vibration isolation system. The design optimization of the pneumatic vibration isolation system is required for the reduction of cost, endeavor and time, and it needs modeling and calculation algorithm. The nonlinear models are devised from the fluid mechanical expression for components of the system and the calculation algorithm is derived from the mathematical relationship between the models. It is shown that the orifice makes the nonlinear property of the transmissibility curve that the resonant frequency changes by the amplitude of excited vibration. Linearization of the nonlinear models is tried to reduce elapsed time and truncation error accumulation and to enable the transmissibility calculation of the system with multi damping chambers. The equivalent mechanical models generated by linearization clarify the function of each component of the system and lead to the linearized transfer function that can give forth to the transmissibility exactly close to that of nonlinear models. The modified successive under-relaxation method is developed to calculate the linearized transfer function.

A study on vibration characteristics and tuning of smart cantilevered beams featuring an electo-rheological fulid

  • Park, S.B.;Cheong, C.C.;Suh, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.134-141
    • /
    • 1993
  • Electro-Rheological(ER) fluids undergo a phase-change when subjected to an external electic field, and this phase-change typically manifests itself as a many-order-of-magnitude change in the rheological behavior. This phenomenon permits the global stiffness and energy- dissipation properties of the beam structures to be tuned in order to synthesize the desired vibration characteristics. This paper reports on a proof-of-concept experimental investigation focussed on evaluation the vibration properties of hollow cantilevered beams filled with an ER fluid. and consequently deriving an empirical model for predicting field-dependent vibration characteristics. A hydrous-based ER fluid consisting of corn starch and silicone oil is employed. The beams are considered to be uniform viscoelastic materials and modelled as a viscously-damped harmonic oscillator. Natural frequency, damping ratio and elastic modulus are evaluated with respect to the electric field and compared among three different beams: two types of different volume fraction of ER fluid and one type of different particle concentration of ER fluid by weight. Transient and forced vibration responses are examined in time domain to demonstrate the validity of the proposed empirical model and to evaluate the feasibility of using the ERfluid as an actuator in a closed-loop control system.

  • PDF

Dynamic behavior of smart material embedded wind turbine blade under actuated condition

  • Mani, Yuvaraja;Veeraragu, Jagadeesh;Sangameshwar, S.;Rangaswamy, Rudramoorthy
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.211-217
    • /
    • 2020
  • Vibrations of a wind turbine blade have a negative impact on its performance and result in failure of the blade, therefore an approach to effectively control vibration in turbine blades are sought by wind industry. The small domestic horizontal axis wind turbine blades induce flap wise (out-of-plane) vibration, due to varying wind speeds. These flap wise vibrations are transferred to the structure, which even causes catastrophic failure of the system. Shape memory alloys which possess physical property of variable stiffness across different phases are embedded into the composite blades for active vibration control. Previously Shape memory alloys have been used as actuators to change their angles and orientations in fighter jet blades but not used for active vibration control for wind turbine blades. In this work a GFRP blade embedded with Shape Memory Alloy (SMA) and tested for its vibrational and material damping characteristics, under martensitic and austenite conditions. The embedment portrays 47% reduction in displacement of blade, with respect to the conventional blade. An analytical model for the actuated smart blade is also proposed, which validates the harmonic response of the smart blade.

Safe Arm Design with MR-based Passive Compliant Joints and Visco-elastic Covering for Service Robot Applications

  • Yoon Seong-Sik;Kang Sungchul;Yun Seung-kook;Kim Seung-Jong;Kim Young-Hwan;Kim Munsang
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1835-1845
    • /
    • 2005
  • In this paper a safe arm with passive compliant joints and visco-elastic covering is designed for human-friendly service robots. The passive compliant joint (PCJ) is composed of a magneto-rheological (MR) damper and a rotary spring. In addition to a spring component, a damper is introduced for damping effect and works as a rotary viscous damper by controlling the electric current according to the angular velocity of spring displacement. When a manipulator interacts with human or environment, the joints and cover passively operate and attenuate the applied collision force. The force attenuation property is verified through collision experiments showing that the proposed passive arm is safe in view of some evaluation measures.

Comparative Analysis of Integer-order and Fractional-order Proportional Integral Speed Controllers for Induction Motor Drive Systems

  • Khurram, Adil;Rehman, Habibur;Mukhopadhyay, Shayok;Ali, Daniyal
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.723-735
    • /
    • 2018
  • Linear proportional-integral (PI) controllers are an attractive choice for controlling the speed of induction machines because of their simplicity and ease of implementation. Fractional-order PI (FO-PI) controllers, however, perform better than PI controllers because of their nonlinear nature and the underlying iso-damping property of fractional-order operators. In this work, an FO-PI controller based on the proposed first-order plus dead-time induction motor model and integer-order (IO) controllers, such as Ziegler-Nichols PI, Cohen-Coon PI, and a PI controller tuned via trial-and-error method, is designed. Simulation and experimental investigation on an indirect field-oriented induction motor drive system proves that the proposed FO-PI controller has better speed tracking, lesser settling time, better disturbance rejection, and lower speed tracking error compared with linear IO-PI controllers. Our experimental study also validates that the FO-PI controller maximizes the torque per ampere output of the induction machine and can effectively control the motor at low speed, in field-weakening regions, and under detuned conditions.

Experiments for the Vibration Control of Steel Frame Structure Using Toggle Brace and Lead Rubber Damper (토글가새와 납-고무 제진장치를 적용한 구조물 진동제어 실험)

  • Park, Jung-Woo;Park, Jin-Young;Lee, Wan-Ha;Kim, Ki-Man;Park, Kun-Nok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.171-176
    • /
    • 2011
  • The purposes of the research were to evaluate system performance and response of building structure under external load for full scale modal-testing-tower applied toggle bracing and lead rubber damper(LRD). The dynamic properties of the structure were measured before and after installing damper under harmonic excitation using the AMD and the results were compared. The harmonic excitation condition is to increase 0.01Hz sine sweep signal from 0.49Hz to 0.63Hz. As a result of measuring resonant frequency, before installing damper is 0.55Hz and after installing damper is 0.62Hz. The experimental results after installing damper were also distinguished from simulation results and the main cause of this results is temperature dependency property of rubber material.

  • PDF

An Analysis of Characteristics of Floor Dynamic Properties and Bang-machine Impact Force on Floating Floor Using System Analysis (시스템 해석을 이용한 뜬바닥구조에서의 바닥구조 동특성과 뱅머신의 충격력 특성 분석)

  • Mun, Dae-Ho;Park, Hong-Gun;Hwang, Jae-Seung;Hong, Geon-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.390-398
    • /
    • 2014
  • Heavy-weight floor impact noise is directly related to the impact source and floor vibration property. Dynamic properties of the standard floating floor that is used in Korea was investigated using accelerance, acceleration energy spectral density(ESD), and structural modal test. In the standard floating floor, natural frequency was decreased by the finishing mortar mass and the damping ratio was increased. Bang-machine force spectrum acting on the concrete slab can be calculated using inverse system analysis. Impact force acting on concrete slab is changed by interaction of finishing mortar and resilient material. The amplitude of the bang-machine force spectrum was amplified in low frequency range(below 100 Hz), and over 100 Hz was decreased. Changed force spectrum influence to the response of structure vibration, so the heavy-weight floor impact noise level was changed.

Stuctural Characteristics on Drilling Center Column made of Epoxy-granite Material (드릴링 센타용 에폭시-그래나이트재 컬럼의 구조물 특성 연구)

  • 원시태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.03a
    • /
    • pp.158-165
    • /
    • 1995
  • A new fungible materal named Epoxy-Granite composite is applied to the column structure of drilling center in order to investigate the advanced dynamic chatateristics comparing with a conventional cast iron material. The dimensions of new colum structure are adjusted to keep the same stiffness (El value) and the manufacturing conditions are formulated based on the preceeding research experience about the development of Epoxy-Granite structural material. The two kinds of experiments are set up. one of which is for the measurement of natural mode and frequency using experimental modal analysis and the other one is for the measurement of vibration amplitude during idling operation of a machine fool. The comparison of maximum, accelerance values at each natural frequency of bending mode shows a Epoxy-Granite column have larger modal damping ratios(over 2times) than a cast iron column. The vibration amplitude of Epoxy-Granite column measued on the bed motor base and top of column are also much smaller (up to 12%) than the case of cast iron column. It is therefore confirmed that a Epoxy-Granite materal exhibits a good anti-vibrational property even if it is used under the actual operational environments of machine eool as a practical structural element.

  • PDF

The Errors and Reducing Method in 1-dof Frequency Response Function from Impact Hammer Testing (충격햄머 실험에 의한 1자유도 주파수응답함수의 오차와 해결방법)

  • 안세진;정의봉
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.702-708
    • /
    • 2002
  • The spectrum of impulse response signal from an impulse hammer testing is widely used to obtain frequency response function(FRF). However the FRFs obtained from impact hammer testing have not only leakage errors but also finite record length errors when the record length for the signal processing is not sufficiently long. The errors cannot be removed with the conventional signal analyzer which treats the signals as if they are always steady and periodic. Since the response signals generated by the impact hammer are transient and have damping, they are undoubtedly non-periodic. It is inevitable that the signals be acquired for limited recording time, which causes the errors. This paper makes clear the relation between the errors of FRF and the length of recording time. A new method is suggested to reduce the errors of FRF in this paper. Several numerical examples for 1-dof model are carried out to show the property of the errors and the validity of the proposed method.