• Title/Summary/Keyword: Damping capacity analysis

Search Result 169, Processing Time 0.022 seconds

Analysis of Free Vibration and Damping Characteristics of a Composite Plate by Using Modified 3-Dimensional 16-Node Elements (수정된 3차원 16절점 요소에 의한 복합재 판의 자유진동 및 감쇠특성 해석)

  • 윤태혁;김상엽;권영두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.990-1004
    • /
    • 1995
  • A modified 16-node element for composite plate has been proposed and compared with the 20-node element to check the validity of it. The fields of numerical inspection include mode analysis and specific damping analysis. By symetrizing the conventional unsymmetric damping matrix in the analysis of specific damping capacity, we could compute the specific damping capacity and make a program, effectively. In addition, we could predict the errors caused by reduction of integration order in thickness direction depending upon the number of layers.

Development of Cable Damper System and Its Verification Test (사장교 케이블 댐퍼시스템 개발과 검증실험)

  • Seo, Ju-Won;Kim, Nam-Sik;Suh, Jeong-Gin;Jeong, Woon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.394-402
    • /
    • 2001
  • In order to lessen cable vibration, new cable damper system with high damping rubber was developed using the basis of the LRB design scheme. The analysis model of cable damper system incorporate voigt-kelvin damper model into the nonlinear cable analysis model. To achieve maximum damping capacity both reducing damper stiffness and developing high damping rubber were performed. As a result of verification test, the high damping rubber damper show its effectiveness in improving cable damping capacity.

  • PDF

Effects of Various Baffle Designs on Acoustic Characteristics in Combustion Chamber of Liquid Rocket Engine

  • Sohn, Chae-Hoon;Kim, Seong-Ku;Kim, Young-Mog
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.145-152
    • /
    • 2004
  • Effects of various baffle designs on acoustic characteristics in combustion chamber are numerically investigated by adopting linear acoustic analysis. A hub-blade configuration with five blades is selected as a candidate baffle and five variants of baffles with various specifications are designed depending on baffle height and hub position. As damping parameters, natural-frequency shift and damping factor are considered and the damping capacity of various baffle designs is evaluated. Increase in baffle height results in more damping capacity and the hub position affects appreciably the damping of the first radial resonant mode. Depending on baffle height, two close resonant modes could be overlapped and thereby the damping factor for one resonant mode is increased exceedingly. The present procedure based on acoustic analysis is expected to be a useful tool to predict acoustic field in combustion chamber and to design the passive control devices such as baffle and acoustic resonator.

Damping Capacity of Mg-Al Casting Alloy Refined by Aluminum Carbide Particles (알루미늄 카바이드 입자로 미세화된 Mg-Al 주조합금의 진동감쇠능)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.6
    • /
    • pp.293-298
    • /
    • 2007
  • Influences of aluminum carbide ($Al_4C_3$) addition on microstructure and damping capacity of Mg-3%Al casting alloy have been investigated based on experimental results of optical micrography, scanning electron microscopy with energy-dispersive spectrometry analysis and damping capacity measurement at RT. The addition of $Al_4C_3$ particles results in an efficient grain refinement. The damping capacity shows an increasing tendency with an increase in $Al_4C_3$ content. The damping value associated with $Al_4C_3$ particles is linearly dependent on the volume fraction of $Al_4C_3$ particles to the 2/3 power, $f_{2/3}$, which corresponds to the total surface area of the particles.

Seismic Fragility Analysis of the Structure Considering Composite Modal Damping (복합모드감쇠를 고려한 구조물의 지진취약도분석)

  • 조성국;조양희;박형기;황규호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.200-207
    • /
    • 2001
  • This paper introduces a methodology of seismic fragility analysis and discusses the basic input variables, focusing on the conservatism and variability of reference response spectrum. The procedures to consider the composite modal damping in the seismic fragility analysis is presented and its effects on the seismic capacity of structure is evaluated through an example analysis of the nuclear power plant structure which has typical composite modal damping characteristics. Two seismic fragility analyses were performed to obtain the seismic capacities which evaluated by considering the composite modal damping and the single damping characteristics. The results showed that the seismic fragility analysis without considering the different values of composite modal damping may considerably overestimate the seismic capacity of coupled structures.

  • PDF

Evaluation of Bearing Capacity of Piles in Sand Using Pile Driving Analyzer (동재하시험을 이용한 모래지반의 말뚝지지력 산정)

  • 이우진;석종수
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.145-154
    • /
    • 1997
  • Though the static pile load tests gives the mosts accurate estimation on the load carrying capacity of tested pile, it appears time-consuming and not economical. Many test methods using equipments, such as Pile Driving Analyzer(PDA), STATNAMIC, and Osterberg cell, have been introduced in Korea, and pile best using PDA has been gaining popularity because of iris fast and simple operation. Static and dynamic tests results on the piles installed in the granular coils were analyzed to investigate the effect of geometrical damping on the estimated load carrying capacity. It was found that the CAPWAP analysis without considering geometrical damping effect underestimates the pile capacity by 30~60% under certain conditions. It was observed that the underestimation of pile capacity by CAPWAP occurs on the piles installed in the water-borne granular boils by SIP methods. When Smith skin damping value(SSkn) greater than 1.0 sec/m is obtained in CAPWAP analysis, it may reflect the large possibility of underestimation of pile capacity. The introduction of the geometircal damping option in CAPWAP analysis gives reasonable pile capacity, compared with the static pile load test results, and reduces the SSb value under 0.7 sec/m.

  • PDF

Design of supplemental viscous dampers in inelastic SDOF system based on improved capacity spectrum method

  • Li, Bo;Liang, Xing-Wen
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.541-554
    • /
    • 2007
  • A simplified yet effective design procedure for viscous dampers was presented based on improved capacity spectrum method in the context of performance-based seismic design. The amount of added viscous damping required to meet a given performance objective was evaluated from the difference between the total demand for effective damping and inherent damping plus equivalent damping resulting from hysteretic deformation of system. Application of the method is illustrated by means of two examples, using Chinese design response spectrum and mean response spectrum. Nonlinear dynamic analysis results indicate that the maximum displacements of structures installed with supplemental dampers designed in accordance with the proposed method agree well with the given target displacements. The advantage of the presented procedure over the conventional iterative design method is also highlighted.

Capacity spectrum method based on inelastic spectra for high viscous damped buildings

  • Bantilas, Kosmas E.;Kavvadias, Ioannis E.;Vasiliadis, Lazaros K.
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.337-351
    • /
    • 2017
  • In the present study a capacity spectrum method based on constant ductility inelastic spectra to estimate the seismic performance of structures equipped with elastic viscous dampers is presented. As the definition of the structures' effective damping, due to the damping system, is necessary, an alternative method to specify the effective damping ratio ${\xi}eff$ is presented. Moreover, damping reduction factors (B) are introduced to generate high damping elastic demand spectra. Given the elastic spectra for damping ratio ${\xi}eff$, the performance point of the structure can be obtained by relationships that relate the strength demand reduction factor (R) with the ductility demand factor (${\mu}$). As such expressions that link the above quantities, known as R - ${\mu}$ - Τ relationships, for different damping levels are presented. Moreover, corrective factors (Bv) for the pseudo-velocity spectra calculation are reported for different levels of damping and ductility in order to calculate with accuracy the values of the viscous dampers velocities. Finally, to evaluate the results of the proposed method, the whole process is applied to a four-storey reinforced concrete frame structure and to a six-storey steel structure, both equipped with elastic viscous dampers.

Acoustic Analysis for Design Optimization of Hub-Blade Baffle in Liquid Rocket Engine (액체로켓엔진에서 음향해석을 통한 허브-블레이드 배플 형상의 최적화)

  • Kim, Hong-Jip;Kim, Seong-Ku;Seol, Woo-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.945-952
    • /
    • 2004
  • Acoustic characteristics of combustion chamber having various baffle configurations are numerically investigated by linear acoustic analysis to suggest reliable baffle specifications in first stage of KSLV-I. To determine the configuration of baffles, an acoustic modal analysis as well as the macroscopic analysis has been done. Hub has another effect of suppressing transverse acoustic mode by confining flow in baffled compartment over general effect of increase in acoustic damping of radial acoustic modes. So, a sufficient number of hub needs to be installed to obtain acoustic damping capacity. 3-blade configuration designed to suppress the first tangential mode has relatively low damping capacity, compared to 5 or 6-blade one. Optimum value of axial baffle length has been determined by comparing acoustic characteristics of combustion chamber having various baffle lengths.

The Design of Cable Damper System far Jindo Bridge and its Field Verification Test (진도대교 케이블 댐퍼시스템 설계 및 검증실험)

  • Seo, Ju-Won;Kim, Nam-Sik;Ahn, Sang-Sup;Jeong, Woon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.302-310
    • /
    • 2001
  • In order to lessen cable vibration, new cable damper system with high damping rubber was developed using the basis of the LRB design scheme. The analysis model of cable damper system incorporate voigt-kelvin damper model into the nonlinear cable analysis model. To achieve maximum damping capacity both reducing damper stiffness and developing high damping rubber were performed. As a result of verification test, the high damping rubber damper shows its effectiveness in improving cable damping capacity.

  • PDF