• Title/Summary/Keyword: Damping Material

Search Result 587, Processing Time 0.027 seconds

Damping Effect of Reinforced Polyurethane Foam under Various Temperatures

  • Lee, Tak-Kee;Kim, Myung-Hyun;Rim, Chae-Whan;Chun, Min-Sung;Suh, Yong-Suk
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.230-235
    • /
    • 2011
  • Reinforced polyurethane foam (RPUF) is one of the important materials of Mark III type insulation systems used in liquefied natural gas (LNG) cargo containment systems. However, RPUF is the most difficult material to use with regard to its safety assessment, because there is little public and reliable data on its mechanical properties, and even some public data show relatively large differences. In this study, to investigate the structural response of the system under compressive loads such as sloshing action, time-dependent characteristics of RPUF were examined. A series of compressive load tests of the insulation system including RPUF under various temperature conditions was carried out using specimens with rectangular section. As a result, the relationship between deformation of RPUF and time is linear and dependent on the loading rate, so the concept of strain rate could be applied to the analysis of the insulation system. Also, we found that the spring constant tends to converge to a value as the loading rate increases and that the convergence level is dependent on temperature.

Development of High Voltage Power Supply for Semi-Active Suspension System Using ER Fluids (ER 유체를 이용한 반능동 현가장치용 고전압 전원장치의 개발)

  • 정세교;신휘범
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.453-464
    • /
    • 2002
  • The electrorheological(ER) fluid is a new material and is used for the mechanical motion devices such as semi-active suspensions, high speed clutches, and vibration isolators. The ER fluid applications need high voltage power supplies having special requirements to control the viscosity of the ER fluid. This paper deals with the development of the high voltage power supply for the semi-active suspension system using the ER fluid. The characteristics of the ER fluid are analyzed, and the design and implementation of the high voltage power supply are presented. It is well demonstrated through the experiment that the developed high voltage power supply shows a good performance suitable for the ER fluid application.

Experimental Performance Evaluation of MR Damper for Integrated Isolation Mount (통합제진마운트용 MR 댐퍼의 실험적 성능 평가)

  • Seong, Min-Sang;Choi, Seung-Bok;Kim, Cheol-Ho;Lee, Hong-Ki;Baek, Jae-Ho;Han, Hyun-Hee;Woo, Je-Kwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1161-1167
    • /
    • 2010
  • This paper presents experimental performance evaluation of a magnetorheological(MR) damper for integrated isolation mount for ultra-precision manufacturing system. The vibration sources of the ultra-precision manufacturing system can be classified as follows: the one is the environmental vibration from the floor and the other is the transient vibration occurred from stage moving. The transient vibration occurred from the stage moving has serious adverse effect to the process because the vibration scale is quite larger than other vibrations. Therefore in this research, a semi-active MR damper, which can control the transient vibration, is adopted. Also the stage needs to be isolated from tiny vibrations from the floor. For this purpose, a dry-frictionless MR damper is required. In order to achieve this goal, a novel type of MR damper is originally designed and manufactured in this work. Subsequently, the damping force characteristics of MR damper are evaluated by simulation and experiment. In addition, the vibration control performance of the MR damper associated with the stage mass is evaluated.

Experiments for the Vibration Control of Steel Frame Structure Using Toggle Brace and Lead Rubber Damper (토글가새와 납-고무 제진장치를 적용한 구조물 진동제어 실험)

  • Park, Jung-Woo;Park, Jin-Young;Lee, Wan-Ha;Kim, Ki-Man;Park, Kun-Nok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.171-176
    • /
    • 2011
  • The purposes of the research were to evaluate system performance and response of building structure under external load for full scale modal-testing-tower applied toggle bracing and lead rubber damper(LRD). The dynamic properties of the structure were measured before and after installing damper under harmonic excitation using the AMD and the results were compared. The harmonic excitation condition is to increase 0.01Hz sine sweep signal from 0.49Hz to 0.63Hz. As a result of measuring resonant frequency, before installing damper is 0.55Hz and after installing damper is 0.62Hz. The experimental results after installing damper were also distinguished from simulation results and the main cause of this results is temperature dependency property of rubber material.

  • PDF

An Analysis of Characteristics of Floor Dynamic Properties and Bang-machine Impact Force on Floating Floor Using System Analysis (시스템 해석을 이용한 뜬바닥구조에서의 바닥구조 동특성과 뱅머신의 충격력 특성 분석)

  • Mun, Dae-Ho;Park, Hong-Gun;Hwang, Jae-Seung;Hong, Geon-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.390-398
    • /
    • 2014
  • Heavy-weight floor impact noise is directly related to the impact source and floor vibration property. Dynamic properties of the standard floating floor that is used in Korea was investigated using accelerance, acceleration energy spectral density(ESD), and structural modal test. In the standard floating floor, natural frequency was decreased by the finishing mortar mass and the damping ratio was increased. Bang-machine force spectrum acting on the concrete slab can be calculated using inverse system analysis. Impact force acting on concrete slab is changed by interaction of finishing mortar and resilient material. The amplitude of the bang-machine force spectrum was amplified in low frequency range(below 100 Hz), and over 100 Hz was decreased. Changed force spectrum influence to the response of structure vibration, so the heavy-weight floor impact noise level was changed.

Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System (차량용 MR 충격댐퍼의 동특성 해석)

  • Song, Hyun-Jeong;Woo, David;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.147-152
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed for reduce transmitted force to vehicle chassis and finally protect occupants from injury. In the case of frontal collision, the bumper make main role of isolation material for collision attenuation. In this study, proposed bumper system composed of MR impact damper and structures. The MR impact damper is to adopted MR fluid which has reversible properties with applied magnetic field. MR fluid operates under flow mode with Bingham flow and bellows is used for generation of fluid flow. Mathematical model of MR impact damper incorporated with MR fluid is established. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

  • PDF

Human Response Measurement and Ride Quality Evaluation for Seats having various Material Porperties (물성치가 다른 시트에서의 인체 진동 측정 및 승차감 평가)

  • 조영건;박세진;윤용산
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.171-180
    • /
    • 2000
  • This paper deals with the whole-body vibration and ride quality evaluation in the vertical direction. The responses of the floor, hip, back, and head in four subjects were measured for various seats when the floor was excited by random vibration with r.m.s of 1.2m/s2 in the vertical direction. In the transmissibility between the hip and floor, the fundamental mode is observed at 4.4 Hz. In the transmissibility between the head and floor, the fundamental mode at 4.4Hz and the second mode at 7.6Hz are observed. It is shown that the head motion is 41% larger than the hip motion and the response of female subject is larger than that of male subject. The response without backrest also was compared with that with backrest. From these human responses ride quality of five seats were evaluated by the ride value such as transfer ration having frequency weighting function is the statistical sense. It is observed that the seat having high damping property can reduce the most acceleration exposed to hip in the statistical sense for all ride valves, while the seat having different seat spring doesn't show statistical difference.

  • PDF

Structure and Physical Properties of Earth Crust Material in the Middle of Korean Peninsula(5) : Characteristic Measurement of Geophone using Free Impedance and Step Force Method (한반도 중부권 지각물질의 구조와 물성 연구(5) : Free impedance와 Step force법을 이용한 수진기의 특성측정)

  • 유영준;송무영
    • The Journal of Engineering Geology
    • /
    • v.4 no.2
    • /
    • pp.207-218
    • /
    • 1994
  • The natural constants of moving coil type geophone can be determined by free impedance and step force method. The former method was desirable for the measurement of natural frequency($f_o$), inertial mass(m) and damping factor($h_o$), but the latter method for sensitivity(G). In particular, the value by the latter method should be corrected for the noise by the long period movement of measurement device. The results of frequency characteristics from these constants operate the accelerometer and displacement system in the boundary of natural frequency.

  • PDF

Effect of Foaming Temperature on Cell Structure of 606X Series Aluminum Alloy Metallic Foams (Foaming 온도에 따른 606X계 발포 알루미늄의 제조 특성)

  • Song, Yeong-Hwan;Park, Soo-Han;Jeong, Min-Jae;Kang, Kwang-Jung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.2
    • /
    • pp.79-84
    • /
    • 2008
  • Metal foam is one of the most interesting materials with various multi-functional properties such as light weight, energy absorption, high stiffness and damping capability. Among them, energy absorption property has keen interests in the field of automotives for passenger protection. Nowadays, researches about pore size and porosity control of the foam are increased to correspond them. However, though energy absorption properties are improved, these results are not cost-effective process. In present research, however, as a part of improving the energy absorption property of metallic foams, 606X aluminum alloy was used for cell wall material which has higher strength than pure aluminum. And its morphological features are characterized. As a results, porosity and pore size are uniformity distribution with increasing foaming temperature in the case of 6061 alloy foams. 6063 alloy foam specimens have opposite tendency because of the influence of alloying element and viscosity of the molten melt.

The Analysis and Experimental Study on the Wheel Absorber for Reduction of Noise Emission during the Train Operation (철도차량의 운행 중 소음 저감을 위한 휠업소버의 해석 및 실험적 고찰)

  • Son, Young-Jin;Chung, Su-Young;Jang, Won-Rak;Choi, Sang-Chun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2163-2172
    • /
    • 2008
  • The noise to be considered as the most important in railway systems is the noise generated from the wheel/rail interaction. Such noise can be divided into three categories; that is, the rolling noise, the squeal noise and the wheel howling noise. Especially in metro systems, this type of noise has been considered seriously in recent years, and the diversified studies on the mechanism and solutions of such noise are in progress by many railways and researching bodies. In this study, a specially designed wheel absorber is installed in the wheel, and FEM analysis and laboratory tests are executed for the two cases, i.e. with wheel absorber and without wheel absorber, to check the effect of the wheel absorber in noise reduction. For the FEM analysis, the frequency response functions for respective cases are compared. And, for the laboratory test, following four cases are tested and compared; that is, i) with wheel only, ii) installation of ring damper only, iii) installation of damping material and cover, iv) installation of complete absorber system.

  • PDF