• Title/Summary/Keyword: Damping Force Control

Search Result 312, Processing Time 0.036 seconds

Design of MR damper with multi_stage core (다중 자기 코일 작동기를 사용한 MR damper의 설계해석)

  • Lee, Gyu-Seop;Yoo, Won-Hee;Ryu, Bong-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.525-528
    • /
    • 2008
  • The dynamic range of MR damper is the most important characteristics for the usage of semi-active control system. The damping force can be increased by simply decresing the orifice gap in the traditional oil damper, but it deteriorate the dynamic range in MR damper. In this paper, the multi-stage electro-magnetic core is suggested to maintain the performance of MR damper with a large damping force. The MR damper with 3 stage core is designed and manufactured for testing and analysis.

  • PDF

Optimal Variable Damping Control for a Robot Carrying an Object with a Human

  • Hideki, Hashimoto;Chung, W.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.25.3-25
    • /
    • 2001
  • This paper describes a control method of a robot cooperating with a human. A task in which a robot and a human move an object cooperatively is considered. To develop the force controller of the robot, the characteristics of human arm are investigated. The arm is forced to move along a trajectory in the experiment and the exerted force and the displacement are analyzed, It is found the force characteristics of the human arm is regarded as an optimal damper with minimizing a cost function. Then, the model is implemented to a robot and the cooperation of the robot and a human operator is examined. The effectiveness of the derived model is investigated and the experimental results show that the human moves the object supported by the robot with a minimum jerk trajectory.

  • PDF

Inertia Property-Based Redundancy Resolution in Posture Control of Mobile Manipulator

  • Kang, Sungchul;Komoriya, Kiyoshi;Yokoi, Kazuhito;Koutoku, Tetsuo;Tanie, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.155.4-155
    • /
    • 2001
  • This paper deals with the inertia property-based redundancy resolution in posture control of a mobile manipulator. As a measure for the redundancy resolution of a mobile manipulator, an effective inertia at the end effector in the operational space is proposed and investigated. The reduced effective inertia has a significant effect on reducing the impulse force in collision with environment. To find a posture satisfying both the reduced inertia and joint limit constraints, we propose a combined potential function method that can deal with multiple constraints. The proposed reduced inertia property algorithm is integrated into a damping controller to reduce the impulse force at collision and to regulate the contact force in mobile manipulation ...

  • PDF

The active vibration control with force cancelling observer in elastic system (힘 상쇄 관측기를 이용한 탄성계 진동의 능동제어)

  • 박영필;이규섭;최봉환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1016-1025
    • /
    • 1988
  • A force cancelling observed to control the vibration of a single degree of freedom elastic system subjected to an arbitrary, unmeasurable disturbance is considered in this paper. The main idea of a force cancelling observer is how an estimate of the excitation can be derived and used to generate a control force which reduces the vibration. This control is shown to be robust with respect to the parameters describing the behavior of the system. Experimental and numerical results are presented which show the efficacy of the observer when the system is excited by periodic, random, and impulsive torques.

Equivalent damping ratio based on earthquake characteristics of a SDOF structure with an MR damper (지진특성에 따른 MR 감쇠기가 설치된 단자유도 구조물의 등가감쇠비)

  • Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.459-464
    • /
    • 2007
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally, response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

  • PDF

Equivalent damping ratio based on the earthquake response of a SDOF structure with a MR damper (MR 감쇠기가 설치된 단자유도 구조물의 지진응답에 기초한 등가감쇠비)

  • Park, Ji-Hun;Moon, Byoung-Wook;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.879-885
    • /
    • 2006
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally, response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

  • PDF

Equivalent Damping Ratio Based on Earthquake Characteristics of a SDOF Structure with an MR Damper (지진특성에 따른 MR감쇠기가 설치된 단자유도 구조물의 등가감쇠비)

  • Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.87-93
    • /
    • 2008
  • Seismic control performance of MR dampers, which have severe nonlinearity, varies with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally. response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

Experimental Evaluation on the Vibration Control Effect of Tuned Liquid Damper with Embossment (벽면 요철형 동조액체댐퍼의 진동제어성능에 관한 실험적 평가)

  • Ju, Young Kyu;Kim, Dae Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.765-772
    • /
    • 2002
  • Many researchers have studied several vibration control devices such as TMD, TLD, and VED to reduce the acceleration level for tall buildings. Advantages of TLD (tuned liquid damper) include easy installation, low cost, and less maintenance. However, the dynamic characteristics of TLD must be verified by experiment and analysis due to the difficulties in evaluating the characteristics of water sloshing. In this study, free vibration and dynamic excitation experiments of structure with TLD were conducted to verify vibration control force of the proposed TLD for high-rise building. The parameters were mass ratio of water to structure, number of damping nets, and aspect ratio. From the test results, the responses of structure with water tank were observed to be smaller than those of structure alone. Furthermore, better damping effect could be achieved with larger mass ratio, more damping nets, and larger aspect ratio. However, in the case of water tank with no damping net, little damping effect was obtained.

A study on the improvement of a suspension system adopting a semiactive on-off damper (반능동 단속형 감쇠기를 이용한 현가장치 개선에 관한 연구)

  • 최성배;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.959-967
    • /
    • 1988
  • In this paper, 2-DOF vehicle suspension system with a semiactive on-off damper was studied for improving the ride comfort. It is known that a nonlinear hydraulic damper, which generates force proportional to the square of the relative velocity, can describe the actual fluid resisting type damper more properly than the traditional viscous damping model. On the other hand, hydraulic damper adoption in analysis makes the system nonlinear and causes difficulties to get the system response. In this work, time domain direct integration method was used to calculate system displacement and acceleration. first of all, the response of the suspension system experiencing a given road profile was optimized by Lagrangian multiplier method within the range of given damping coefficients. The appropriate on-loaf damping values were obtained by averaging the already calculated optimum damping coefficients from Lagrangian techniques. The criterion to control the on-off mechanism was determined by examining the suspension efficiency. It was found that the best out of practically applicable criteria is following the sign (positive and negative) of the multiplication of relative displacement and velocity. Judging from the theoretical calculations, it was proved that the semiactive on-off damper can increase suspension efficiency as much as 8-11% in object function.

Numerical Evaluation of Control Force in Rectangular Tuned Liquid Damper (사각형 동조 액체 감쇄장치(TLD)에서 조절하중의 수치적 산정)

  • 정일영;황종국
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.250-257
    • /
    • 1995
  • The properties of Tuned Liquid Damper are investigated theoretically. In this study, numerical model is a nonlinear model for a rectangular TLD under horizontal motion on the basis of the shallow water wave theory, where the damping of the liquid motion is included semianalytically. For TLD subjected to harmonic external force, the liquid motion of TLD is simulated. Analysis result is showed that liquid motion in TLD is strongli nonlinear even under small excitation.

  • PDF