• Title/Summary/Keyword: Damper spring

Search Result 406, Processing Time 0.026 seconds

A Study on Nonlinear Pneumatic System Characteristics (비선형 공기압시스템 특성연구)

  • 박재범;김동수;김형의;염만오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.826-830
    • /
    • 1996
  • The pneumaic systems are widely applied to chemical factory of fire dangry and factory automation. by using compressed air, it is difficult to dynamics action analysis that the pneumatics system acts to nonlinear motion through orifices and valve flow. This paper was studied to a nonlinear chararistics of pneumaic spring, damper and absorber of pneumaic cushion cylinder.

  • PDF

Dynamic Characteristics Simulation for Magnetically-Levitated Vehicle (자기부상열차의 동특성 시뮬레이션)

  • Kim, Jong-Moon;Kim, Choon-Kyung;Park, Min-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1134-1135
    • /
    • 2006
  • In this paper, dynamic simulation results for magnetically-levitated vehicles are resented. The dynamic equation and models for a half-bogie system are derived. The system includes primary suspension system, magnet module, spring-damper system and cabin. Also, the dynamic characteristics for the derived models are analysed. Using the results, levitation control algorithm can be designed to meet the performance requirements.

  • PDF

An experimental study on resonance reduction of system with one degree of freedom by magneticfluid (자성 유체를 이용한 1자유도 계의 공진멸소에 관한 실험적 연구)

  • Chun, U. H.;Lee, B. G.;Hwang, S. S.;Lee, H. S.;Kim, J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.131-137
    • /
    • 1999
  • Under magnetism , as the magneticfluid is being itself magnetized, increase the apparent viscosity because of its body force and has the magnetic characteristics in response ot magnetism, the magnetic fluid is getting attention in various field. The magnetic fluid has the fluidity, which is a special characteristics of fluid and the magneticism , which is a special one of solid. Using this characteristics, this study has been proceeded to show the basic data for developing of a viscous damper with magnetism fluid as hydraulic fluid. Experimental study shows that the application of magnetic field is effective reducing the resonance characteristics of the spring-mass system.

  • PDF

Wafer Motion Control of Clean Tube System (클린튜브 시스템의 웨이퍼 운동 제어)

  • 신동헌;최철환;정규식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.475-481
    • /
    • 2004
  • This paper presents a force model of the clean tube system, which was developed as a means of transferring air-floated wafers inside a closed tube filled with super clean air. The recovering force from the holes for floating wafers is modeled as a linear spring and thus the wafers motion is modeled as a mass-spring-damper system. The propelling forces are modeled as linear along with the wafer location. The paper also proposes a control method to emit and stop a wafer at the center of a control unit. It reveals the minimum value of the propelling force to leave from the control unit. In order to stop the wafer, it utilizes the exact time when the wafer arrives at the position to activate the propelling force. Experiments with the clean tube system built for the 12 inch wafer shows the validity of the proposed model and the algorithm.

Analysis of Camshaft Vibration Characteristics with Mixed Lubrication (혼합 윤활을 고려한 캠샤프트 진동 특성 해석)

  • Kim, Jee-Woon;Moon, Tai-Soon;Han, Dong-Chul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.185-192
    • /
    • 2002
  • This paper focused on the dynamic behavior of camshaft in a direct acting type valve train system. To investigate camshaft behavior, transient vibration analysis is performed by using the transfer matrix method. The camshaft is treated as lumped mass system supported by spring and damper. Front the presented analytical model, we could predict dynamic behavior of camshaft, shaft locus within bearing and bearing load. The presented mode and results will be very helpful to design the optimal camshaft and valve train system.

  • PDF

Dynamic Response of a Beam Structure with Discrete Supports Subjected to a Moving Mass (이동질량에 의한 이산지지 보 구조물의 동적응답)

  • Oh, B.J.;Ryu, B.J.;Lee, G.S.;Lee, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.264-270
    • /
    • 2011
  • This paper deals with dynamic response of a beam structure with discrete spring-damper supports under a moving mass. Governing equations of motion taking into account of all inertia effects of the moving mass were derived by Galerkin's mode summation method, and Runge-Kutta integration method was applied to solve the differential equations. The effects of the speed of the moving mass, spring stiffness, damping coefficient, span number of a beam structure, mass ratio of the moving mass on the dynamic response of the beam structure have been studied. Some numerical results provide design engineers for the beam structure design with discrete supports under a moving mass.

Optimum Design of Impact Absorbing System for Spreader by Vibration Analysis (진동해석에 의해 스프레더용 충격흡수기의 최적설계)

  • 홍도관;김동영;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.689-693
    • /
    • 1997
  • This paper deals wth the impact and the transient analysis of the impact absorbing system consist of double damping. piston and sprlng system in spreader to increaas efficlcncy of it. It shows the optimum damping coefficient and spring constant under the limited stroku of Impact absorbing system using for crane spreader and the optimum condition of impact absorbing system causing certain reaction force as time. which is characteristic of dashpot and rubber. This system absorbed 11.5 and 88.5 % impact energq at the spring and the damper respectively.

  • PDF

Wafer Motion Control of a Clean Tube System (클린튜브 시스템의 웨이퍼 정지 제어)

  • 신동헌;최철환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.459-462
    • /
    • 2003
  • This paper presents a force model of the clean tube system, which was developed as a means for transferring the air-floated wafers inside the closed tube filled with the super clean air. The recovering force from the holes for floating wafers is modeled as a linear spring and thus the wafer motion is modeled as a mass-spring-damper system. The propelling forces are modeled as linear along with the wafer location. The paper also proposes the control method to emit and stop a wafer at the center of a control unit. It shows the minimum value of the propelling force to leave from the control unit. In order to stop the wafer, it utilizes the exact time when a wafer arrives at the position to activate the propelling force. Experiments with the clean tube system built for 12 inch wafer shows the validity of the proposed model and the algorithm.

  • PDF

Optimum Suspension System Design for a Drum-typed Washing Machine (드럼세탁기 현가시스템의 최적설계)

  • Cha, Sang-Tae;Baek, Woon-Kyung
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.20-28
    • /
    • 2014
  • Most washing machines are now produced as a drum-type, where a washing drum mounted on a suspension system with springs and dampers, to minimize the transmittance of the vibration from the drum to the cabinet. The purpose of this paper is to develop optimized suspension system of the drum washing machine which minimizes transmission of disturbing vibration and force. In this paper, a method for optimizing suspension system of the drum washing machine is presented using ADAMS. The design variables to optimize are extracted using Sequential Quadratic Programming(SQP) in ADAMS. To evaluate optimized spring constants and damping coefficients of the drum washing machine, simulation was done to compare the vibration attenuation performances before and after the optimization. The results of simulation show that the optimized suspension system has better performance than before the optimization.