• Title/Summary/Keyword: Damper spring

Search Result 406, Processing Time 0.031 seconds

Modeling and Dynamic Characteristics Analysis of a Continuously Variable Damper with Electro-Hydraulic Pressure Control Valve

  • Moon, Do-Hong;Chul, Sohn-Hyun;Shik, Hong-Keum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.174.5-174
    • /
    • 2001
  • In this paper, mathematical modeling and dynamic characteristics analysis of a continuously variable damper used for semi-active suspension systems are investigated. After analyzing the geometry of a typical continuously variable damper, models for various components including piston, orifices, spring, and valves are proposed and the flow equations during expansion and compression strokes are derived. To verify the mathematical models developed, the dynamic characteristics of the models are simulated using MATLAB/SIMULINK and are compared with experimental results. It was confirmed that the developed models represent well the actual damper and can be used for control system design.

  • PDF

A Study on The Vibration Attenuation of a Driver Seat Using an MR fluid Damper

  • Park, Chan-Ho;Ahn, Byeong-Il;Jeon, Do-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.111.6-111
    • /
    • 2001
  • A seat suspension system with a controlled MR(Magneto Rheological) fluid damper is introduced to improve the ride quality and prevent the health risk of a driver compared to conventional seats. The system locates between a seat cushion and base, and is composed of a spring, MR fluid damper and controller. The MR fluid damper designed in valve mode is capable of producing a wide range of damping force according to applied currents. In experiments, a person was sitting on the controlled seat excited by a hydraulic system. The skyhook control, continuous skyhook control and relative displacement control were applied and the continuous skyhook control improved the vibration suppression by 36.6%.

  • PDF

Study on Damping Characteristics of Hydropneumatic Suspension Unit of Tracked Vehicle

  • Cho, Jin-Rae;Lee, Hong-Woo;Yoo, Wan-Suk;Lee, Jin-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.262-271
    • /
    • 2004
  • Hydropneumatic suspension unit is an important part of tracked vehicles to absorb external impact load exerted from the non-paved road and the cannon discharge. Its absorption performance is strongly influenced by both damping and spring forces of the unit. In this paper, we numerically analyze the damping characteristics of the in-arm-type hydropneumatic suspension unit (ISU) by considering four distinct dynamic modes of the ISU damper: jounce-loading, jounce-unloading, rebound-loading and rebound-unloading. The flow rate coefficients determining the oil flow rate through the damper orifice are decided with the help of independent experiments. The wheel reaction force, the flow rate at cracking and the damping energy are parametrically investigated with respect to the orifice diameter and the wheel motion frequency.

Development of a CAE Technique for Vehicle Suspension Design -Roll Stabilizer Bar Modelling and Damper Design- (자동차 서스팬션의 설계를 위한 CAE 기법 개발 -롤안정바 모델링 및 댐퍼 설계-)

  • 김광석;길혁문;유완석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.160-168
    • /
    • 1998
  • In this paper. the Joint reaction forces in the suspension system of a passenger car are determined to calculate the deflections and stresses in the damper strut. A mathematical model of the Roll Stabilizer Bar(RSB) is developed to include the RSB forces in the dynamics analysis. Using these RSB forces, the variations of the damper forces and spring forces due to the wheel strokes are determined in a McPherson strut suspension. The graphs of shear force diagram, bending moment diagram, bending stress and deflections are drawn by the calculated joint reaction forces.

  • PDF

Ride Comfort Investigation of 1/4 MR Damper Vehicle under Different Tire Pressure (타이어 압력 변화에 따른 1/4 MR 댐퍼 차량의 승차감 고찰)

  • Maeng, Young-Jun;Seong, Min-Sang;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.343-348
    • /
    • 2011
  • This paper presents ride comfort characteristics of a quarter-vehicle magneto-rheological (MR) suspension system with respect to different tire pressure. As a first step, controllable MR damper is designed and modeled based on both the optimized damping force levels and mechanical dimensions required for a commercial full-size passenger vehicle. Then, a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the MR damper is constructed. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of the quarter-vehicle MR suspension system. Finally, the ride comfort analysis with respect to different tire pressure is undertaken in time domain. In addition, a comparative result between controlled and uncontrolled is provided by presenting vertical RMS displacement.

  • PDF

Modeling and Dynamic Characteristics Analysis of a Continuously Variable Damper with Electro-Hydraulic Pressure Control Valve (반능동현가장치용 전자제어식 연속가변댐퍼의 모델링 및 동특성 해석)

  • Do, Hong-Mun;Hong, Gyeong-Tae;Hong, Geum-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.158-166
    • /
    • 2002
  • A mathematical model and dynamic characteristics ova continuously variable damper for semi-active suspen- sion systems are investigated. After analyzing the geometry of a typical continuously variable damper, mathematical models fur individual components including piston, orifices, spring, and valves are first derived and then the flow equations for extension and compression strokes are investigated. To verify the developed mathematical model, the dynamic response of the model are simulated using MATLAB/SIMULINK and are compared with experimental results. The proposed model can be used not only for mechanical components design but also for control system design.

Performance Uncertainty Estimation of a Nonlinear Vibration System Based on a Sampling Method (샘플 추출방법에 근거한 비선형 진동계의 성능 불확실성 예측)

  • Choi, Chan-Kyu;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.113-118
    • /
    • 2009
  • A designer regards the vibration system as a linear system. However, in real world, nonlinearity of a vibration system should exist caused by various factors like manufacturing conditions or uncertain material properties. So, properties of a spring and a damper which are consisting the vibration system have statistical distribution. Therefore, a designer needs to analyze the statistical nonlinearity in a vibration system. In this paper, $1^{st}$ Taylor series expansion method and univariate dimension reduction method apply to a performance measure of nonlinear vibration system, and compare each result. And then, merits and demerits of each method are discussed. For apply more actual problem, a performance measure population is estimated based on design variable samples like properties of spring or damper.

  • PDF

Design of a Seismic Isolation Table for both indoor and outdoor Electrical Communication Equipment (전기통신설비를 위한 옥내외 겸용 면진테이블 설계)

  • Lee, Chun-Se;Ahn, Hyeong-Joon;Lee, Taek-Won;Son, In-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.472-472
    • /
    • 2009
  • The safety of cultural properties, medical treatment and electrical communication equipments in a building was hardly considered against the earthquake induced vibration, while the integrity of the building structure has been taken into account through the resistant earthquake design. This paper presents design of a seismic isolation table for both indoor and outdoor electrical communication equipment. First of all, artificial earthquake waves compatible with floor and ground response spectra for electrical communication equipments are generated using previously recorded seismic waves. Two kinds of one-degree-of-freedom seismic isolation table systems: spring-linear damper and spring-friction damper systems are considered and their responses to artificial earthquake waves are simulated. Design parameter study for two seismic isolation tables are performed through simulations and a seismic isolation table for both indoor and outdoor electrical communication equipment is designed considering the simulation results.

  • PDF

Stability of TSK-type Time-Delay FLC (TSK 모델 시간 지연 퍼지제어기의 안정성)

  • 명환춘;변증남
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.347-353
    • /
    • 2001
  • A stable TSK -type FLC can be designed by the method of Parallel Distributed Compensation (PDC) [2] but in this case, solving the LMI problem is not a trivial task. To overcome such a difficulty, a Time-Delay based FLC (TDFLC) is proposed. TSK -type TDFLC consists of Time-Delay Control (TDC) and Sliding Mode Control (SMC) schemes, which result in a robust controller based upon an integral sliding surface. Finally, simulation study is conducted for a mass-spring-damper system.

  • PDF

Position Control of Chained Multiple Mass-Spring-Damper Systems - Adaptive Output Feedback Control Approaches

  • S. S. Ge;L. Huang;Lee, T. H.
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.144-155
    • /
    • 2004
  • This paper addresses the issue of position control of a chain of multiple mass-spring-damper (CMMSD) units which can be found in many physical systems. The dynamic model of a CMMSD system with any degrees of freedom is expressed in a closed-form for the convenience of the controller design. Backstepping and model reference adaptive control (MRAC) approaches are then used to develop two adaptive output feedback controllers to control the position of a CMMSD system. The proposed controllers rely on the measurements of the input (force) and the output (position of the mass unit at the end of the chain) of the system without the knowledge of its parameters and internal states. Simulations are used to verify the effectiveness of the controllers