• Title/Summary/Keyword: Damper displacement

Search Result 349, Processing Time 0.031 seconds

Behavior of Seismic Control system with Double Toggle Brace (이중 토글브레이스를 이용한 변위증폭 제진시스템의 이력특성)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan;Yang, Won-Jik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.137-138
    • /
    • 2010
  • This paper presents new seismic control system that utilize toggle brace to amplify the displacement of damper. A full scale steel moment frame was constructed for the purpose of testing the energy dissipation system with double toggle brace.

  • PDF

Optimal Variable Damping Control for a Robot Carrying an Object with a Human

  • Hideki, Hashimoto;Chung, W.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.25.3-25
    • /
    • 2001
  • This paper describes a control method of a robot cooperating with a human. A task in which a robot and a human move an object cooperatively is considered. To develop the force controller of the robot, the characteristics of human arm are investigated. The arm is forced to move along a trajectory in the experiment and the exerted force and the displacement are analyzed, It is found the force characteristics of the human arm is regarded as an optimal damper with minimizing a cost function. Then, the model is implemented to a robot and the cooperation of the robot and a human operator is examined. The effectiveness of the derived model is investigated and the experimental results show that the human moves the object supported by the robot with a minimum jerk trajectory.

  • PDF

Application of Some Semiactive Control Algorithms to a Smart Base Isolated Building Employing MR Dampers (MR감쇠기가 설치된 지진격리 건물의 스마트 진동제어)

  • Jung, Hyung-Jo;Choi, Kang-Min;Jang, Ji-Eun;Lee, In-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.544-551
    • /
    • 2005
  • This paper investigates the effectiveness of the MR damper-based control systems for seismic protection of base isolated building sturcutres employing some semiactive control algorithms, such as the modified clipped-optimal control, the maximum energy dissipation, and the modulated homogeneous friction, by examining the Phase I smart base isolated benchmark building problem. The results of the numerical simulations showed that most of the control systems considered herein could be beneficial in reducing seismic responses, especially base displacement or isolator deformation, of base isolated building structures. It is also verified that another version of the modified clipped-optimal control algorithm proposed in this study and the modulated homogeneous friction algorithm are more effective than other semiactive control algorithms.

  • PDF

Heave Compensation System Design for Offshore Crane based on Input-Output Linearization

  • Le, Nhat-Binh;Kim, Byung-Gak;Kim, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.27-34
    • /
    • 2017
  • A heave motion of the offshore crane system with load is affected by unpredictable external factors. Therefore the offshore crane must satisfy rigorous requirements in terms of safety and efficiency. This paper intends to reduce the heave displacement of load position which is produced by rope extension and sea wave disturbance in vertical motion. In this system, the load position is compensated by the winch actuator control. The rope is modeled as a mass-damper-spring system, and a controller is designed by the input-output linearization method. The model system and the proposed control method are evaluated on the simulation results.

Series tuned mass dampers in train-induced vibration control of railway bridges

  • Kahya, Volkan;Araz, Onur
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.453-461
    • /
    • 2017
  • This paper presents the series multiple tuned mass dampers (STMDs) to suppress the resonant vibrations of railway bridges under the passage of high-speed trains (HSTs). A STMD device consisting of two spring-mass-damper units connected each other in series is installed on the bridge. In solution, bridge is modeled as a simply-supported Euler-Bernoulli beam with constant cross-section, and vehicle is simulated as a series of moving forces with constant speed. By the assumed mode method, the governing equations of motion of the beam-TMD device coupled system traversed by a moving train are obtained. The optimum values for the parameters of the STMD device are obtained for the criterion based on the minimization of the maximum dynamic displacement of the beam at its midspan. Single TMD and multiple TMDs in parallel are also considered for demonstration of the STMD device's performance. The results show that STMDs are effective in bridge vibration suppression and robust to parameters' change in the main system and the absorber itself.

Investigation of isolation system in recoil type weapon (주퇴작용식 발사기구의 완충특성 해석)

  • 김상균;박영필;양현석;김효준;최의중;이성배;류봉조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.104-108
    • /
    • 2002
  • In this study, the dynamic absorbing system for the shoulder-fired system with high-level-impact force has been investigated. for this purpose, firstly, mathematical model based on the short recoil system has been constructed. In order to design the dynamic absorbing system, parameter sensitivity analysis and parameter optimization process have been performed under constraints of moving displacement and transmitted force. In order to enhance the efficiency of energy dissipation, the stroke-dependent variable damping system has been analyzed. finally, the performance of the designed dynamic absorbing system has been evaluated by simulation with respect to the benchmark system.

  • PDF

Numerical simulation of hydroelastic effects of sloshing phenomena in a rectangular tank (사각탱크내의 슬로싱 현상에 기인한 벽면운동에 대한 수치모사)

  • Ha, Minho;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.534-537
    • /
    • 2012
  • Hydroelastic effects on sloshing phenomena in a rectangular tank are numerically investigated. The dimension of the tank is $1000mm{\times}600mm$, and the filling ratio of water is 20% of tank height. One of the side walls of tank is assumed to be flexible. The tank is excited into sway motion with amplitude of 100mm and frequency of 0.53Hz that is first natural frequency of water inside the tank. Prediction results for time histories of pressure and displacement of flexible and rigid walls are compared to quantitatively assess hydroelastic effects on sloshing phenomena.

  • PDF

Analysis of optimum condition for the suspension system with torsion bar spring (Torsion bar spring을 가진 현수장치에 대한 최적조건 해석)

  • 손병진;신영철
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.40-45
    • /
    • 1982
  • The spring constant and damping coefficient are vital factors of ride comfort and driving stability in the vibration of the vehicle which is mainly induced by a variety of the surface irregularity. This paper reviewed the optimum condition of the damping factor derived from the typical model of two mass-two degrees of freedom. Through the evaluation and discussion, it was presented that the spring of the torsion bar type was not effective for the driving stability in the large displacement of the wheel, and also that the damper with progressive performance has to be fundamentally selected to meet the requirement of the driving suability when this kind of spring is used as a suspension system of the vehicle.

  • PDF

Robust design of liquid column vibration absorber in seismic vibration mitigation considering random system parameter

  • Debbarma, Rama;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1127-1141
    • /
    • 2015
  • The optimum design of liquid column dampers in seismic vibration control considering system parameter uncertainty is usually performed by minimizing the unconditional response of a structure without any consideration to the variation of damper performance due to uncertainty. However, the system so designed may be sensitive to the variations of input system parameters due to uncertainty. The present study is concerned with robust design optimization (RDO) of liquid column vibration absorber (LCVA) considering random system parameters characterizing the primary structure and ground motion model. The RDO is obtained by minimizing the weighted sum of the mean value of the root mean square displacement of the primary structure as well as its standard deviation. A numerical study elucidates the importance of the RDO procedure for design of LCVA system by comparing the RDO results with the results obtained by the conventional stochastic structural optimization procedure and the unconditional response based optimization.

Development of Cable Exciting Robot for Estimating Dynamic Properties of Stay Cables (사장교 케이블의 동특성 추정을 위한 케이블 가진 로봇의 개발)

  • Lee, Jong-Jae;Kim, Jae-Min;Ahn, Sang-Sup;Choi, Jun-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.39-42
    • /
    • 2007
  • It is necessary to estimate the dynamic characteristics of stay cables ie., the natural frequencies and the damping ratios of the stay cables to design cable damper for appropriate mitigation of cable vibrations and/or to estimate the tension of cables in service. In this study, a cable exciting robot for evaluating dynamic characteristics of stay cables has been developed, and the feasibility of the developed system has been demonstrated through a field test on the stay cable installed at the test yard of Highway and Transportation Technology Institute (HTTI). The dynamic characteristics of the stay cable were estimated based on acceleration data as well as displacement measured by digital image processing technique.

  • PDF