• Title/Summary/Keyword: Damped vibration

Search Result 202, Processing Time 0.023 seconds

Vibration Control Performance Evaluation of Semi-active Outrigger Damper System (준능동 아웃리거 댐퍼시스템의 진동제어 성능평가)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.81-89
    • /
    • 2015
  • Damped outrigger systems have been proposed as a novel energy dissipation system to protect tall buildings from severe earthquakes and strong wind loads. In this study, semi-active damping devices such as magnetorheological (MR) dampers instead of passive dampers are installed vertically between the outrigger and perimeter columns to achieve large and adaptable energy dissipation. Control performance of semi-active outrigger damper system mainly depends on the control algorithm. Fuzzy logic control algorithm was used to generate command voltage sent to MR damper. Genetic algorithm was used to optimize the fuzzy logic controller. An artificial earthquake load was generated for numerical simulation. A simplified numerical model of damped outrigger system was developed. Based on numerical analyses, it has been shown that the semi-active damped outrigger system can effectively reduce both displacement and acceleration responses of the tall building in comparison with a passive outrigger damper system.

Vibration Analysis of Non-homogeneous Damped Beam Using the Differential Transformation Method (미분변환법에 의한 비균질 감쇠보의 진동 해석)

  • Shin, Young-Jae;Jaun, Su-Ju;Yun, Jong-Hak
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.1-6
    • /
    • 2005
  • In this paper, the natural frequencies of non-homogeneous damped beam are determined by using the differential transformation. The beam considered has different stiffness, damping and mass properties in each of two parts. The various boundary conditions are assumed at each end. The results obtained by the present method agree very well with those reported in the previous works. The present analysis shows the usefulness and validity of differential transformation in solving a non-homogeneous damped beam problem.

A comparative study on the methods for analyses of viscoelastically damped structures (점탄성 감쇠기가 설치된 구조물의해석방법에 관한 연구)

  • 김진구
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.135-142
    • /
    • 1999
  • Although the vibration control effects of viscoelastic dampers in building structures have been well proved by numerous theoretical and practical examples it is difficult to find an outstanding method for analysis of viscoelastically damped structures satisfying both exactness and efficiency. Thus in this study four analysis methods for viscoelastically damped structures that are currently used or can be applied for the those system are speculated and compared to provide bass for developing a better method for analysis of viscoelastically damped structures. The seismic response time history inter-story drfts and analysis time recorded by computer simulation of four different methods are compared. Among these methods complex modal superposition approach turns out to be ecomomic and accurate procedure.

  • PDF

Estimation of viscous and Coulomb damping from free-vibration data by a least-squares curve-fitting analysis

  • Slemp, Wesley C.H.;Hallauer, William L. Jr.;Kapania, Rakesh K.
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.279-290
    • /
    • 2008
  • The modeling and parameter estimation of a damped one-degree-of-freedom mass-spring system is examined. This paper presents a method for estimating the system parameters (damping coefficients and natural frequency) from measured free-vibration motion of a system that is modeled to include both subcritical viscous damping and kinetic Coulomb friction. The method applies a commercially available least-squares curve-fitting software function to fit the known solution of the equations of motion to the measured response. The method was tested through numerical simulation, and it was applied to experimental data collected from a laboratory mass-spring apparatus. The mass of this apparatus translates on linear bearings, which are the primary source of light inherent damping. Results indicate that the curve-fitting method is effective and accurate for both perfect and noisy measurements from a lightly damped mass-spring system.

A study on the calculation of forced axial vibration with damping for the marine diesel engine shafting by the mechanical impedance method (기계적 임피던스법에 의한 박용디젤기관 추진축계의 강제감쇠종진동 계산에 관한 연구)

  • 박현호;김의간;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.51-60
    • /
    • 1987
  • Recently, the problem of the axial vibration for the marine diesel engine shafting has become important due to the increased exciting forces resulting from high supercharging and large output, and the reduced natural frequencies resulting from long stroke and show speed. The effects of the axial vibration on the propulsion shafting induce cracks of the connecting point of crankpin and crankarm, the severe wear of thrust bearing, the fatigue failure of each fixing bolt and jointed parts, the hull and local hull vibrations, and also the wear and the noise due to intense hammering phenomena of thrust collar. Therefore, each classification society requires the calculation of natural frequencies and their amplitudes and also measurements of the forced damped axial vibration. At present, the technical and theoretical level is at the stage of estimating the resonant points and their maximum displacements, but the estimated displacements of the resonant points are not so reliable as the torsional one. In this study, induced stresses and amplitudes of the forced damped axial vibration are calculated. For this purpose, the equation of forced axial vibration with damping for the propulsion shafting is derived and its steady-state response is calculated by the mechanical impedance method. A computer program for above calculations is developed. The measured values are analyzed and the calculated results are compared with the measured ones. They show fairly good agreements and the reliability of developed program is confirmed.

  • PDF

Development of Low-Vibration Controller for Ultra-Precision Dual Stage (초정밀 듀얼 스테이지를 위한 고댐핑 저진동 제어기 개발)

  • Kang, Seok Il;Kim, Jung-Han
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.75-82
    • /
    • 2016
  • In this study, a cross-damped low vibration controller was developed to reduce vibration in ultra-precision dual stage driven by master/slave principle. In master-slave structure, the master stage leads the driving motion and the slave stage follows it so as to maintain a constant gap between two stages. In this structure, a small perturbation of master stage makes big oscillations in slave servoing stage, so a low damped master stage composed of voice coil motor makes a long vibration in settling area after driving motion profile. In this research, an effective feedback damping algorithm for increase the damping characteristics of the dual stage was developed. The designed velocity damping algorithm improves the system stability and reduces the settling time of the whole system. Simulation and experimental results show that the developed algorithm reduces settling time and improves the regulating performance.

Comparison of Acceleration of Vibration Isolator and Accelerometer Attached Vibration Isolator Using Numerical Analysis (수치 해석을 이용하여 제진대와 제진대에 부착된 가속도계의 가속도 비교)

  • Shin, Dong Ho;Lee, Jung Woo;Oh, Jae-Eung;Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • The process of producing high precision and light weight product is always exposed to impact load or shock. Because of this, isolator device is required. To measure the response of the isolator, accelerometer is practically used. However, the measured response of the accelerometer is different to the response of the isolator. To predict the response of the accelerometer and the isolator, 2-DOF damped system with an input shock is modeled using numerical analysis. 1-DOF damped system with a base excitation is also used to predict the response of the isolator. The mass ratio, damping ratio, and natural frequency ratio are then varied. The predicted responses from the two modeling approaches are compared and large errors are found.

Effect of Rubber Damper of Flywheel on the Vibration of Diesel Engine (플라이휠의 고무댐퍼가 기관(機關)의 진동(振動)에 미치는 영향(影響))

  • Myung, B.S.;Kim, S.R.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.239-251
    • /
    • 1993
  • Data acquisition system and computer program developed in this study could be well used in engine vibration analysis. The system and program developed were also operated to be able to control measuring interval, number of channels, number of data. The flywheel was specially studied to provide the proper weight with rubber damper for the engine design at low level of vibration. This study was conducted to obtain basic data which affect the engine vibration. The experiment of this study was performed on original weight flywheel, weight-reduced flywheel, weight-reduced and rubber-coated flywheel, weight-reduced and damper-attached flywheel. Avarage of peak value, maximum vibration, power spectrum density based on FFT analysis are major factors of this experiment. Results were obtained as follows : 1. When rubber was inserted in the flywheel rim of which weight was reduced from 32.2kgf to 24.4 kgf, maximum vibration of the engine was decreased 48.3% at X axis, 35.5% at Y axis and 34.6% at Z axis in comparison with the flywheel of original weight. 2. When the flywheel of rubber damper was compared with the original flywheel, the average of absolute vibration for rubber damped flywheel was decreased at X, Y, Z axis and especially its decreasing rate was so high at X-axis comparing with the other flywheel, which implied that rubber damper was very useful to reducing the vibration of the engine at X axis. 3. Hysteresis losses of X, Y, Z axis were greatly decreased in the flywheel with rubber damper on rim. 4. Damped oscillation effect on X and Y axis vibration above average peak vibration by the flywheel of rubber damper on rim was larger than those by the other flywheels. 5. Power spectrums of vibration at real and imaginery part were bi-mode type. The vibration frequency of rubber dampered flywheel which weight is decreased was slightly increased as compared with original flywheel.

  • PDF

Absorptive Characteristics of a Helmholtz Resonator Damped by a Flexible Porous Screen (유연한 다공성 스크린을 가진 헬름홀쯔 공명기의 흡음특성)

  • Kim, Sang-Ryul;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.865-868
    • /
    • 2005
  • A Helmholtz resonator is one of noise control elements widely used in many practical applications. The resonator has very high absorption at resonance frequency but the frequency bandwidth is very small. Therefore many kinds of additional resistive screens have been applied to the resonator's neck in order to increase the bandwidth. This paper discusses the absorptive characteristics of a Helmholtz resonator damped by a flexible porous screen in form of wire mesh. First, various experimental results are introduced and studied. Secondly, the effect of the resistive screen is theoretically predicted. It is shown that the distance between the screen and aperture affects on the resonance frequency as well as the absorption of the system.

  • PDF