• Title/Summary/Keyword: Damaged tubular members

Search Result 8, Processing Time 0.017 seconds

Structural Characteristics of Damaged Offshore Tubular Members

  • Cho, Sang-Rai;Kwon, Jong-Sig;Kwak, Dong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.1-7
    • /
    • 2010
  • Over the past few decades various experimental and theoretical investigations have been performed on offshore tubular members with regard to damage resistance and residual strength. Analysis of damaged tubular members requires a three-dimensional shell analysis for accurate results. Even though various commercial packages are available for this purpose, a beam-column analysis is preferred for offshore structural designs. In this paper, empirical equations are provided for a more accurate beam-column analysis of damaged tubes including the relationships between the lateral denting load and the depth of the dent, the rate of dent deepening due to increasing curvature and the longitudinal variation in the dent depth of damaged tubes. A design equation to predict the ultimate bending capacities of damaged offshore tubular members is also presented.

Ultimate Strength of Dented Tubular Members(2nd report) -under Bending Loads- (Dent 손상을 갖는 원통부재의 최종강도에 관한 연구(제2보) -굽힘 하중을 받는 경우-)

  • Nho, In-Sik;Chun, Tae-Byng;Cho, Byung-Sam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.56-64
    • /
    • 2004
  • Several types of steel structures which are employed in offshore petroleum activities are constructed with tubular members. These structures are usually subjected to various types of loads such as normal functional loads and environmental loads. Furthermore, accidental loads may also act on the leg or bracing members due to supply boat collisions and objects droppings from platform decks. The extent of damage caused by these loads ranges from total collapse of the structure to small damage which may not have serious consequence at the time of accident. To make optimal design decisions regarding structural safety and economical efficiency, it is very important to be able to assess the influence of damages on the performance of damaged structural members. In the End report, a series of calculations is performed to study the effects of different parameters on the load carrying capacity of such damaged members under pure bending. And the results of analysis are compared with experiment results.

A Study on the Assessment of Damage in Pin-Ended Tubular Members (양단 핀접합 강관부재의 손상 평가에 관한 연구)

  • Kim, Woo Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.415-428
    • /
    • 1994
  • The purpose of this research is to establish the load-shortening relationship for undamaged members and damaged members with pin-ended support. An analytical method based on the numerical integration was proposed to obtain the ascending and descending branch of load-deformation behavior. The analysis was performed by using the momentthrust-curvature relationship including the effect of cross-sectional distortion. A parametric study regarding the the influence of damages on the ultimate strength of tubular members was also performed. Several experiments for the corroded, fabricated tubular members with dent were performed and the results were compared with the proposed method.

  • PDF

Ultimate Strength of Dented Tubular Members(1st report) -under Axial Loads- (Dent 손상을 갖는 원통부재의 최종강도에 관한 연구(제1보) -축 하중을 받는 경우-)

  • Chun, Tae-Byung;Nho, In-Sik;Cho, Byung-Sam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.48-55
    • /
    • 2004
  • Loads on offshore structures are largely transferred to the bracing members in the form of axial forces. The detrimental effects of imperfections on compressive strength are well recognized. Damage in the members of offshore structures would significantly affect the compressive behavior of the members. As a result, such damages may also affect the ability of the structure to withstand the functional and environmental loads. It is important to be able to assess the residual strength of damaged members quickly and accurately. This will help operators to make the decision whether the member has to be repaired or not. In this study, a series of calculation is performed to study the effects of different parameters on the behavior of such damaged members under axial load. And the results of analysis are compared with those of experiment.

A Study on the Ultimate Strength Analysis of Damaged Tubular Members (손상원통부재(損傷圓筒部材)의 최종강도(最終强度) 해석(解析)에 관한 연구(硏究))

  • Jeom-K.,Paik;Byung-C.,Shin
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.24-34
    • /
    • 1990
  • In this paper, the formulation of a new simplified finite element is made to analyze the ultimate strength of damaged tubular members subjected to combined axial force and end moment. A damaged tubular member that has the bending deformation and the local dent is modeled by beam elements. Tangent elastic stiffness matrix of a beam element which contains the effect of the geometric nonlinearity is derived by using the updated Lagrangian approach. Here the contribution of the stiffness in the dented area is neglected since its resistance against the external loads is considered to be small. A fully plastic interaction curve of the element under combined loads taking account of the local dent effect is selected as a yielding criterion at each nodal point. Also tangent elasto-plastic stiffness matrix of the element is formulated by plastic node method. Comparison with the present solution and the existing experimental results is made showing that the present method gives quite an accurate solution.

  • PDF

Tensile Strength Change of Circular Structural member with Artificial Sectional Surface Damage (인위적 표면 단면손상 수준에 따른 원형 부재의 인장성능 변화)

  • Ha, Min-Gyun;Kwon, Tae-Yun;Lee, Won-Hong;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.100-109
    • /
    • 2021
  • This study was examined the tensile strength change of a circular tubular member with artificial sectional damage on its surface to consider surface sectional damage by corrosion. The tensile strength tests were conducted using circular tubular specimens with artificial sectional damage considering sectional damaged height and width on its surface according to the corrosion level. From the tensile strength test results, it is confirmed that tensile strength of the circular tubular specimens was affected by the damaged circumference (damaged width), not damaged length (damaged height) and their tensile failures were appeared at the minimum section of the artificial sectional damage part. Nonlinear finite-element analyses were conducted considering equivalent sectional damage effect on sectional damaged part in tensile specimens to examine the change in the tensile strength of tubular specimens with artificial sectional damage since it is difficult to estimate the sectional damaged surface condition of the specimens clearly. From the nonlinear finite element analysis results for the tensile test specimens, tensile strengths of test specimens with irregular sectional damaged surface were relatively evaluated to be highly decreased than these of FE analysis model with equivalent sectional damage. Therefore, residual tensile strengths of tensile members with irregular sectional damage as local corrosion can be evaluated and predicted using correlation coefficient between tensile test results and FE analysis results with equivalent sectional damage.

Monitoring degradation in concrete filled steel tubular sections using guided waves

  • Beena, Kumari;Shruti, Sharma;Sandeep, Sharma;Naveen, Kwatra
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.371-382
    • /
    • 2017
  • Concrete filled steel tubes are extensively applied in engineering structures due to their resistance to high tensile and compressive load and convenience in construction. But one major flaw, their vulnerability to environmental attack, can severely reduce the strength and life of these structures. Degradation due to corrosion of steel confining the concrete is one of the major durability problems faced by civil engineers to maintain these structures. The problem accelerates as inner surface of steel tube is in contact with concrete which serves as electrolyte. If it remains unnoticed, it further accelerates and can be catastrophic. This paper discusses a non-destructive degradation monitoring technique for early detection corrosion in steel tubes in CFST members. Due to corrosion, damage in the form of debonding and pitting occurs in steel sections. Guided ultrasonic waves have been used as a feasible and attractive solution for the detection and monitoring of corrosion damages in CFST sections. Guided waves have been utilized to monitor the effect of notch and debond defects in concrete filled steel tubes simulating pitting and delamination of steel tubes from surrounding concrete caused by corrosion. Pulse transmission has been used to monitor the healthy and simulated damaged specimens. A methodology is developed and successfully applied for the monitoring of concrete filled steel tubular sections undergoing accelerated chloride corrosion. The ultrasonic signals efficiently narrate the state of steel tube undergoing corrosion.

Evaluation of Compressive Strengths of Tubular Steel Members According to Corrosion Damage and Shape (원형 강관의 국부 부식손상 수준 및 손상형태에 따른 압축강도 성능평가)

  • Ahn, Jin Hee;Nam, Dong Kyun;Lee, Won Hong;Huh, Jungwon;Kim, In Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.213-222
    • /
    • 2016
  • For a steel structure with long service period, structural performance can be changed or decreased by corrosion damage occurred under severe corrosion environment condition. In this study, to examine compressive strength and behavior of circular steel member depending on corrosion damage, compressive loading tests were conducted using circular steel member with artificial corrosion damage which was applied by mechanical process and hand drill. From test results, local corrosion area and pattern is related to their structural performance. Their lcoal bucklings were occurred near artificially sectional damaged part. Reduction in compressive strength of circular steel member was also suggested according to their corroded part and damage.