DOI QR코드

DOI QR Code

Tensile Strength Change of Circular Structural member with Artificial Sectional Surface Damage

인위적 표면 단면손상 수준에 따른 원형 부재의 인장성능 변화

  • 하민균 (경상국립대학교 건설환경공과대학 토목공학과) ;
  • 권태윤 (경상국립대학교 건설환경공과대학 토목공학과) ;
  • 이원홍 (경상국립대학교 건설환경공과대학 토목공학과) ;
  • 안진희 (경상국립대학교 건설환경공과대학 토목공학과)
  • Received : 2021.04.05
  • Accepted : 2021.05.18
  • Published : 2021.06.30

Abstract

This study was examined the tensile strength change of a circular tubular member with artificial sectional damage on its surface to consider surface sectional damage by corrosion. The tensile strength tests were conducted using circular tubular specimens with artificial sectional damage considering sectional damaged height and width on its surface according to the corrosion level. From the tensile strength test results, it is confirmed that tensile strength of the circular tubular specimens was affected by the damaged circumference (damaged width), not damaged length (damaged height) and their tensile failures were appeared at the minimum section of the artificial sectional damage part. Nonlinear finite-element analyses were conducted considering equivalent sectional damage effect on sectional damaged part in tensile specimens to examine the change in the tensile strength of tubular specimens with artificial sectional damage since it is difficult to estimate the sectional damaged surface condition of the specimens clearly. From the nonlinear finite element analysis results for the tensile test specimens, tensile strengths of test specimens with irregular sectional damaged surface were relatively evaluated to be highly decreased than these of FE analysis model with equivalent sectional damage. Therefore, residual tensile strengths of tensile members with irregular sectional damage as local corrosion can be evaluated and predicted using correlation coefficient between tensile test results and FE analysis results with equivalent sectional damage.

본 연구에서는 부식에 의하여 발생하는 표면 단면손상을 고려하여 인위적인 표면 단면손상이 도입된 원형인장 부재의 인장성능 변화를 평가하였다. 인장성능 평가를 위하여 부식수준에 따른 인위적인 단면손상을 손상 폭과 높이를 변화시켜 원형강관 시험체 표면에 도입하였으며, 단면손상 수준에 따른 인장성능 변화를 평가하였다. 인장강도 실험 결과, 원형단면 강관부재의 인장강도는 강관부재의 길이 방향 손상이 아닌 부재 둘레 방향 손상의 영향을 받는 것으로 나타났으며, 부재의 파괴는 손상이 발생한 부재의 최소 단면에서 발생하는 것으로 나타났다. 표면에 불규칙한 손상이 도입된 강관 시험체의 단면조건을 명확하게 평가할 수 없으므로, 단면손상으로 인한 인장강도 변화를 정량적으로 비교하기 위하여 동일 단면 감소효과가 고려된 강관 부재에 대한 비선형 구조해석을 실시하였다. 비선형 구조해석 결과, 실제 부재 표면에 국부적 단면손상이 발생한 부재의 인장강도는 동일 단면 감소효과를 고려한 부재의 인장강도에 비하여 상대적으로 급격하게 저하하는 것으로 평가되었다. 국부부식과 같이 표면에 불규칙한 단면손상이 발생한 부재의 잔존인장성능은 인장시험과 등가손상 단면과 구조해석 결과로부터 평가된 상관계수를 이용하여 평가 및 예측될 수 있을 것이다.

Keywords

Acknowledgement

이 논문은 2020~2021년도 경상국립대학교 대학회계 연구비 지원에 의하여 연구되었음.

References

  1. Kim, I. T., Kim, H. S., Kien, D. D., Jun, J. H., and Ahn, J. H. (2016), Weathering Performance Evaluation of Duplex Coating Systems of Thermal Spraying and Painting using Corrosion Test, Journal of Korean Society of Steel Construction, Korean Society of Steel Construction, 28(2), 97-108. https://doi.org/10.7781/kjoss.2016.28.2.097
  2. Lee, C. -Y., Cheong, H., and Park, J. -H. (2008), Prediction of Lifetime of Steel Bridge Coating on Highway for Effective Maintenance, Journal of the Korean Society of Civil Engineers A, Korean Society of Civil Engineers, 28(3A), 341-347.
  3. Ha, M. -G., Jeong, Y. S., Park, S. H., and Ahn, J. -H. (2019), Evaluation of Relative Corrosion Rate depending on Local Location and Installation of Structural Member in Steel Water Gate, Journal of the Korea Institute for Structural Maintenance and Inspection, The Korea Institute for Structural Maintenance and Inspection, 23(7), 16-24.
  4. Ha, M. -G., Jeon, S. H., Jeong, Y. -S., Mha, H. -S., and Ahn, J. -H. (2021), Corrosion Environment Monitoring of Local Structural Members of a Steel Truss Bridge under a Marine Environment, International Journal of Steel Structures, Korean Society of Steel Construction, 21, 167-177.
  5. Kim, W. B., Paik, J. K., and Yajima, H. (2007), Research for the Evaluation of Corrosion Fatigue Crack Initiation Life, Journal of the Society of Naval Architects of Korea, The Society of Naval Architects of Korea, 44(4), 417-424. https://doi.org/10.3744/SNAK.2007.44.4.417
  6. Ryu, H. -S., An, G. H., Hwang, C. -S., and Kwon, S.-J. (2017), Changes in Corrosion Progress and Ultimate load of Tendon Under 20% and 40% of Ultimate Loading Conditions, Journal of the Korea Institute for Structural Maintenance and Inspection, The Korea Institute for Structural Maintenance and Inspection, 21(4), 47-52.
  7. Jin, Y. -H., Ha, M. -G., Jeon, S. H., Jeong, Y. S., and Ahn, J. -H. (2020), Evaluation of Corrosion Conditions for the Steel Box Members by Corrosion Monitoring Exposure Test, Construction and Building Materials, 258, 120195. https://doi.org/10.1016/j.conbuildmat.2020.120195
  8. Mun, J. M., Jeong, Y. S., Jeon, J. H., Ahn, J. H., and Kim, I. T. (2017), Experimentally Evaluating Fatigue Behavior of Corroded Steels Exposed in Atmospheric Environments, Journal of Korean Society of Steel Construction, Korean Society of Steel Construction, 29(3), 193-204.
  9. Kim, I. T., Lee, M. J., and Shin, C. H. (2011), An Experimental Study on Evaluation of Axially Compressive Buckling Strength of Corroded Temporary Steel, Journal of the Korean Institute of Surface Engineering, The Korean Institute of Surface Engineering, 15(6), 135-146.
  10. Kim, I. T., Chang, H. J., and Cheung, J. Y. (2010), An Experimental Study on the Evaluation of Residual Tensile Load-carrying Capacity of Corroded Steel Plates of Temporary Structure, Journal of Korean Society of Steel Construction, Korean Society of Steel Construction, 22(5), 399-409.
  11. KS D 3566 (2018), Carbon Steel Tubes for General Structural Purposes.
  12. Zhao, Z., Zhang, H., Xian, L., and Liu, H. (2020), Tensile Strength of Q345 Steel with Random Pitting Corrosion based on Numerical Analysis, Thin-Walled Structures, 177, 106579.
  13. ABAQUS (2014), Abaqus/CAE User's Guide, Dassault Systems Simulia Corp.
  14. Jeon, S. H., Ha, M. G., Jeong, Y. S., and Ahn, J. -H. (2019), Evaluation of Corrosion Damage of Structural Steel depending on Atmospheric Exposure Test, Journal of Korean Society of Steel Construction, Korean Society of Steel Construction, 31(4), 245-252. https://doi.org/10.7781/kjoss.2019.31.4.245