• 제목/요약/키워드: Damaged Tubular

검색결과 24건 처리시간 0.017초

Structural Characteristics of Damaged Offshore Tubular Members

  • Cho, Sang-Rai;Kwon, Jong-Sig;Kwak, Dong-Il
    • 한국해양공학회지
    • /
    • 제24권4호
    • /
    • pp.1-7
    • /
    • 2010
  • Over the past few decades various experimental and theoretical investigations have been performed on offshore tubular members with regard to damage resistance and residual strength. Analysis of damaged tubular members requires a three-dimensional shell analysis for accurate results. Even though various commercial packages are available for this purpose, a beam-column analysis is preferred for offshore structural designs. In this paper, empirical equations are provided for a more accurate beam-column analysis of damaged tubes including the relationships between the lateral denting load and the depth of the dent, the rate of dent deepening due to increasing curvature and the longitudinal variation in the dent depth of damaged tubes. A design equation to predict the ultimate bending capacities of damaged offshore tubular members is also presented.

Reserve capacity of fatigue damaged internally ring stiffened tubular joints

  • Thandavamoorthy, T.S.
    • Steel and Composite Structures
    • /
    • 제4권2호
    • /
    • pp.149-167
    • /
    • 2004
  • Offshore platforms have to serve in harsh environments and hence are likely to be damaged due to wave induced fatigue and environmental corrosion. Welded tubular joints in offshore platforms are most vulnerable to fatigue damage. Such damages endanger the integrity of the structure. Therefore it is all the more essential to assess the capacity of damaged structure from the point of view of its safety. Eight internally ring stiffened fatigue damaged tubular joints with nominal chord and brace diameter of 324 mm and 219 mm respectively and thickness 12 mm and 8 mm respectively were tested under axial brace compression loading to evaluate the reserve capacity of the joints. These joints had earlier been tested under fatigue loading under corrosive environments of synthetic sea water and hence they have been cracked. The extent of the damage varied from 35 to 50 per cent. One stiffened joint was also tested under axial brace tension loading. The residual strength of fatigue damaged stiffened joint tested under tension loading was observed to be less than one fourth of that tested under compression loading. It was observed in this experimental investigation that in the damaged condition, the joints possessed an in-built load-transfer mechanism. A bi-linear stress-strain model was developed in this investigation to predict the reserve capacity of the joint. This model considered the strain hardening effect. Close agreement was observed between the experimental and predicted results. The paper presents in detail the experimental investigation and the development of the analytical model to predict the reserve capacity of internally ring stiffened joints.

인위적 표면 단면손상 수준에 따른 원형 부재의 인장성능 변화 (Tensile Strength Change of Circular Structural member with Artificial Sectional Surface Damage)

  • 하민균;권태윤;이원홍;안진희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권3호
    • /
    • pp.100-109
    • /
    • 2021
  • 본 연구에서는 부식에 의하여 발생하는 표면 단면손상을 고려하여 인위적인 표면 단면손상이 도입된 원형인장 부재의 인장성능 변화를 평가하였다. 인장성능 평가를 위하여 부식수준에 따른 인위적인 단면손상을 손상 폭과 높이를 변화시켜 원형강관 시험체 표면에 도입하였으며, 단면손상 수준에 따른 인장성능 변화를 평가하였다. 인장강도 실험 결과, 원형단면 강관부재의 인장강도는 강관부재의 길이 방향 손상이 아닌 부재 둘레 방향 손상의 영향을 받는 것으로 나타났으며, 부재의 파괴는 손상이 발생한 부재의 최소 단면에서 발생하는 것으로 나타났다. 표면에 불규칙한 손상이 도입된 강관 시험체의 단면조건을 명확하게 평가할 수 없으므로, 단면손상으로 인한 인장강도 변화를 정량적으로 비교하기 위하여 동일 단면 감소효과가 고려된 강관 부재에 대한 비선형 구조해석을 실시하였다. 비선형 구조해석 결과, 실제 부재 표면에 국부적 단면손상이 발생한 부재의 인장강도는 동일 단면 감소효과를 고려한 부재의 인장강도에 비하여 상대적으로 급격하게 저하하는 것으로 평가되었다. 국부부식과 같이 표면에 불규칙한 단면손상이 발생한 부재의 잔존인장성능은 인장시험과 등가손상 단면과 구조해석 결과로부터 평가된 상관계수를 이용하여 평가 및 예측될 수 있을 것이다.

Experimental and numerical investigations on remaining strengths of damaged parabolic steel tubular arches

  • Huang, Yonghui;Liu, Airong;Pi, Yong-Lin;Bradford, Mark A.;Fu, Jiyang
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.1-15
    • /
    • 2020
  • This paper presents experimental and numerical studies on effects of local damages on the in-plane elastic-plastic buckling and strength of a fixed parabolic steel tubular arch under a vertical load distributed uniformly over its span, which have not been reported in the literature hitherto. The in-plane structural behaviour and strength of ten specimens with different local damages are investigated experimentally. A finite element (FE) model for damaged steel tubular arches is established and is validated by the test results. The FE model is then used to conduct parametric studies on effects of the damage location, depth and length on the strength of steel arches. The experimental results and FE parametric studies show that effects of damages at the arch end on the strength of the arch are more significant than those of damages at other locations of the arch, and that effects of the damage depth on the strength of arches are most significant among those of the damage length. It is also found that the failure modes of a damaged steel tubular arch are much related to its initial geometric imperfections. The experimental results and extensive FE results show that when the effective cross-section considering local damages is used in calculating the modified slenderness of arches, the column bucking curve b in GB50017 or Eurocode3 can be used for assessing the remaining in-plane strength of locally damaged parabolic steel tubular arches under uniform compression. Furthermore, a useful interaction equation for assessing the remaining in-plane strength of damaged steel tubular arches that are subjected to the combined bending and axial compression is also proposed based on the validated FE models. It is shown that the proposed interaction equation can provide lower bound assessments for the remaining strength of damaged arches under in-plane general loading.

Effects of Human Adipose-Derived Stem Cells in Regenerating the Damaged Renal Tubular Epithelial Cells in an Animal Model of Cisplatin-Induced Acute Kidney Injury

  • Kim, Saeyoon;Lee, Eung Bin;Song, In Hwan;Kim, Yong Jin;Park, Hosun;Kim, Yong Woon;Han, Gi Dong;Kim, Kyung Gon;Park, Yong Hoon
    • Childhood Kidney Diseases
    • /
    • 제19권2호
    • /
    • pp.89-97
    • /
    • 2015
  • Background: We conducted this experimental study to examine whether human adipose-derived stem cells (ADSCs) are effective in achieving a recovery of damaged renal tubular epithelial cells in an animal model of cisplatin-induced acute kidney injury using rats. Methods: To examine the in vitro effects of ADSCs in improving nephrotoxicity, we treated mouse renal tubular epithelial cells with both ADSCs and cisplatin mouse renal tubular epithelial cells. And we equally divided 30 male white Sprague-Dawley (SD) rats into the three groups: the control group (intraperitoneal injection of a sterile saline), the cisplatin group (intraperitoneal injection of cisplatin) and the ADSC group (intraperitoneal injection of cisplatin and the hADSC via the caudal vein). At five days after the treatment with cisplatin, serum levels of blood urine nitrogen (BUN) and creatinine were measured from each SD rat. We performed histopathologic examinations of tissue samples obtained from the kidney. Results: The degree of the expression of TNF-${\alpha}$ and that of Bcl-2 were significantly higher and lower respectively, in cisplatin group (P<0.05). Serum levels of BUN (P=0.027) and creatinine (P=0.02) were significantly higher in cisplatin group. On histopathologic examinations, there was a significant difference in the ratio of the renal injury between cisplatin group and ADSC group (P=0.002). Conclusion: The ADSCs might have a beneficial effect in regenerating the damaged renal tubular epithelial cells.

Dent 손상을 갖는 원통부재의 최종강도에 관한 연구(제2보) -굽힘 하중을 받는 경우- (Ultimate Strength of Dented Tubular Members(2nd report) -under Bending Loads-)

  • 노인식;전태병;조병삼
    • 대한조선학회논문집
    • /
    • 제41권6호
    • /
    • pp.56-64
    • /
    • 2004
  • Several types of steel structures which are employed in offshore petroleum activities are constructed with tubular members. These structures are usually subjected to various types of loads such as normal functional loads and environmental loads. Furthermore, accidental loads may also act on the leg or bracing members due to supply boat collisions and objects droppings from platform decks. The extent of damage caused by these loads ranges from total collapse of the structure to small damage which may not have serious consequence at the time of accident. To make optimal design decisions regarding structural safety and economical efficiency, it is very important to be able to assess the influence of damages on the performance of damaged structural members. In the End report, a series of calculations is performed to study the effects of different parameters on the load carrying capacity of such damaged members under pure bending. And the results of analysis are compared with experiment results.

손상원통부재(損傷圓筒部材)의 최종강도(最終强度) 해석(解析)에 관한 연구(硏究) (A Study on the Ultimate Strength Analysis of Damaged Tubular Members)

  • 백점기;신병천
    • 대한조선학회지
    • /
    • 제27권1호
    • /
    • pp.24-34
    • /
    • 1990
  • 본 연구에서는 축력과 굽힘모멘트의 조합하중(組合荷重)을 받는 손상원통부재의 최종강도(最終强度)를 해석하기위하여 간이유한요소해석이론을 정식화한다. 여기서, 굽힘 및 국부손상이 존재하는 원통부재(圓筒部材)를 보요소로 모델링하며, 각요소의 접선탄성강성행렬(接線彈性剛性行列)은 기하학적 비선형 효과를 고려하여 updated Lagrangian 기법에 의하여 도출한다. 이때, 국부손상부위의 강성이 외력에 대한 저항에 기여하는 정도는 비교적 작다고 생각되므로 요소의 강성평가시에 국부손상부위의 강성은 무시한다. 요소의 소성화는 국부손상부위의 영향을 고려한 전단면(全斷面) 소성강도(塑性强度) 상관관계식을 적용하여 요소의 각절점에서 판정하며, 접선(接線) 탄소성(彈塑性) 강성행렬(剛性行列)은 소성절점법(塑性節點法)에 의하여 계산한다. 마지막으로 본 연구에서 정식화한 해석법을 바탕으로 컴퓨터프로그램을 작성하고 실험 등에 의하여 얻어진 기존의 결과에 대해 재해석하여 본해석법의 정도와 유용성을 확인한다.

  • PDF

양단 핀접합 강관부재의 손상 평가에 관한 연구 (A Study on the Assessment of Damage in Pin-Ended Tubular Members)

  • 김우범
    • 대한토목학회논문집
    • /
    • 제14권3호
    • /
    • pp.415-428
    • /
    • 1994
  • 압측력을 받는 손상된 강관부재의 거동 및 국한내력을 양단이 핀접합된 경우에 대하여 고찰하였다. 손상단면의 뒤틀림으로 인한 비선형성을 고려하기 위하여 유한요소 및 회귀분석에 의한 모멘트-곡률관계식을 도출, 이를 부재해석을 위한 수치적분법에 이용함으로써 해석의 효율 및 실용성을 제고하였다. 제시된 방법의 신뢰도를 확인하기 위하여 실규모 강관에 대한 실험을 수행, 이 결과와 비교하였으며 제작강관, 부식강관에 대하여 초기변형, 편심, 부식도, 등 강관의 결함요소가 극한강도에 미치는 영향에 대하여 조사하였다.

  • PDF

복합 하중에 대한 손상 원통의 잔류강도 (Residual Strength of Damaged Tubulars under Combined Axial Compression, Hydrostatic Pressure and End Bending Moment)

  • 조상래;곽동일
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.118-124
    • /
    • 1989
  • In this paper a design formula has been proposed to predict the residual strength of damaged tubulars subjected to combined axial copression, hydrostatic pressure and end bending loadings. A theoretical analysis method was employed to calculate the residual strengths, in which the geometric configuration of damaged tubulars is realistically described using empirically derived equations. The predictions using this method have been compared with relevent experimental results to demonstrate their validity and accuracy. A rigorous parametric study has been conducted using the method, and then a design formula has been derived based upon the parametric study results.

  • PDF

복합 하중에 대한 손상 원통의 잔류강도 (Residual Strength of Damaged Tubulars under Combined Axial Compression, Hydrostatic Pressure and End Bending Moment)

  • 조상래;곽동일
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.618-618
    • /
    • 1989
  • In this paper a design formula has been proposed to predict the residual strength of damaged tubulars subjected to combined axial copression, hydrostatic pressure and end bending loadings. A theoretical analysis method was employed to calculate the residual strengths, in which the geometric configuration of damaged tubulars is realistically described using empirically derived equations. The predictions using this method have been compared with relevent experimental results to demonstrate their validity and accuracy. A rigorous parametric study has been conducted using the method, and then a design formula has been derived based upon the parametric study results.