• Title/Summary/Keyword: Damaged Layer

검색결과 311건 처리시간 0.026초

AFM 부착형 초미세 다이아몬드 팁 켄틸레버의 제작 및 응용 (Fabrication of Micro Diamond Tip Cantilever for AFM and its Applications)

  • 박정우;이득우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.395-400
    • /
    • 2005
  • Nano-scale fabrication of silicon substrate based on the use of atomic force microscopy (AFM) was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate by a simple scratching process, has been applied instead of conventional silicon cantilever for scanning. A thin damaged layer forms in the substrate at the diamond tip-sample junction along scanning path of the tip. The damaged layer withstands against wet chemical etching in aqueous KOH solution. Diamond tip acts as a patterning tool like mask film for lithography process. Hence these sequential processes, called tribo-nanolithography, TNL, can fabricate 2D or 3D micro structures in nanometer range. This study demonstrates the novel fabrication processes of the micro cantilever and diamond tip as a tool for TNL using micro-patterning, wet chemical etching and CVD. The developed TNL tools show outstanding machinability against single crystal silicon wafer. Hence, they are expected to have a possibility for industrial applications as a micro-to-nano machining tool.

  • PDF

Impact of composite patch on the J-integral in adhesive layer for repaired aluminum plate

  • Kaci, D. Ait;Madani, K.;Mokhtari, M.;Feaugas, X.;Touzain, S.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권6호
    • /
    • pp.679-699
    • /
    • 2017
  • The aim of this study is to perform a finite element analysis of the Von Mises stresses distribution in the adhesive layer and of the J-Integral for a damaged plate repaired by a composite patch. Firstly, we study the effect of the fiber orientation, especially the position of the layers that have orientation angle different of $0^{\circ}$ from the first layer which is in all cases of our study oriented at ($0^{\circ}$) on the J-Integral. Secondly, we evaluate the effects of the mechanical properties of the patch and the use of a hybrid patch on the reduction of stresses distribution and J-Integral. The results show clearly that the stacking sequence for the composite patch must be selected to absorb optimally the stresses from the damaged area and to position the various layers of the composite under the first layer whose fibers orientation will remain in all cases equal to $0^{\circ}$. The use of a hybrid composite reduces significantly the J-Integral and the stresses in both damaged plate and the adhesive layer.

Ar IBE에 의한 Si표면손상이 NiSi특성에 미치는 영향과 $H_2$ anneal 및 TiN capping에 의한 효과 (The influence of Si surface damage by Ar IBE on NiSi characteristics and the effect of $H_2$ anneal and TiN capping)

  • 안순의;지희환;이헌진;배미숙;왕진석;이희덕
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(2)
    • /
    • pp.245-248
    • /
    • 2002
  • In this paper, the influence of Si surface damage on the NiSi formation has been characterized. The silicon surface is damaged using ion beam type spotter. Then, the effect of H2 anneal and TiN capping layer on the damaged has also been analyzed. The sheet resistance of NiSi formed on damaged Si increased rapidly as the damaging time increases while thermal stability of damaged NiSi was stabler than the undamaged one. In the case when H\ulcorner anneal and TiN capping layer were applied together, the characteristics of NiSi shows a little improvement of the sheet resistance.

  • PDF

와이어 소잉 데미지 층이 단결정 실리콘 태양전지 셀 특성에 미치는 영향 (Relation Between Wire Sawing-damage and Characteristics of Single Crystalline Silicon Solar-cells)

  • 김일환;박준성;박재근
    • Current Photovoltaic Research
    • /
    • 제6권1호
    • /
    • pp.27-30
    • /
    • 2018
  • The dependency of the electrical characteristics of silicon solar-cells on the depth of damaged layer induced by wire-sawing process was investigated. To compare cell efficiency with residual sawing damage, silicon solar-cells were fabricated by using as-sawn wafers having different depth of saw damage without any damaged etching process. The damaged layer induced by wire-sawing process in silicon bulk intensely influenced the value of fill factor on solar cells, degrading fill factor to 57.20%. In addition, the photovoltaic characteristics of solar cells applying texturing process shows that although the initial depth of saw-damage induced by wire-sawing process was different, the value of short-circuit current, fill-factor, and power-conversion-efficiency have an almost same, showing ~17.4% of cell efficiency. It indicated that the degradation of solar-cell efficiency induced by wire-sawing process could be prevented by eliminating all damaged layer through sufficient pyramid-surface texturing process.

Damage detection in structures using modal curvatures gapped smoothing method and deep learning

  • Nguyen, Duong Huong;Bui-Tien, T.;Roeck, Guido De;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • 제77권1호
    • /
    • pp.47-56
    • /
    • 2021
  • This paper deals with damage detection using a Gapped Smoothing Method (GSM) combined with deep learning. Convolutional Neural Network (CNN) is a model of deep learning. CNN has an input layer, an output layer, and a number of hidden layers that consist of convolutional layers. The input layer is a tensor with shape (number of images) × (image width) × (image height) × (image depth). An activation function is applied each time to this tensor passing through a hidden layer and the last layer is the fully connected layer. After the fully connected layer, the output layer, which is the final layer, is predicted by CNN. In this paper, a complete machine learning system is introduced. The training data was taken from a Finite Element (FE) model. The input images are the contour plots of curvature gapped smooth damage index. A free-free beam is used as a case study. In the first step, the FE model of the beam was used to generate data. The collected data were then divided into two parts, i.e. 70% for training and 30% for validation. In the second step, the proposed CNN was trained using training data and then validated using available data. Furthermore, a vibration experiment on steel damaged beam in free-free support condition was carried out in the laboratory to test the method. A total number of 15 accelerometers were set up to measure the mode shapes and calculate the curvature gapped smooth of the damaged beam. Two scenarios were introduced with different severities of the damage. The results showed that the trained CNN was successful in detecting the location as well as the severity of the damage in the experimental damaged beam.

다층 퍼셉트론으 인식력 제어와 복원에 관한 연구 (A Study on the Control of Recognition Performance and the Rehabilitation of Damaged Neurons in Multi-layer Perceptron)

  • 박인정;장호성
    • 한국통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.128-136
    • /
    • 1991
  • A neural network of multi layer perception type, learned by error back propagation learning rule, is generally used for the verification or clustering of similar type of patterns. When learning is completed, the network has a constant value of output depending on a pattern. This paper shows that the intensity of neuron's out put can be controlled by a function which intensifies the excitatory interconnection coefficients or the inhibitory one between neurons in output layer and those in hidden layer. In this paper the value of factor in the function to control the output is derived from the know values of the neural network after learning is completed And also this paper show that the amount of an increased neuron's output in output layer by arbitary value of the factor is derived. For the applications increased recognition performance of a pattern than has distortion is introduced and the output of partially damaged neurons are first managed and this paper shows that the reduced recognition performance can be recovered.

  • PDF

경주국립공원 소금강지구 산불피해지의 식생변화 분석 (Analysis on Vegetation Change of Forest Fire Damaged Area in Sogeumgang District, Gyeongju National Park)

  • 유주한;권순영
    • 한국환경복원기술학회지
    • /
    • 제22권4호
    • /
    • pp.47-64
    • /
    • 2019
  • The purpose of this study is to present the basic data for the management of National Park by surveying and analysing the change of vegetation of forest fire damaged area in Sogeumgang District, Gyeongju National Park. The covergae ratio, a number of species and dominant species changed overall in forest fire damaged area. The final result of the change is as follows. In case of coverage ratio in the shrub layer, Site 1 was 30%, 40% in Site 2, 50% in Site 3, 60% in Site 4 and 30% in Site 5. In the herb layer, Site 1 was 90%, 80% in Site 2, 90% in Site 3, 60% in Site 4 and 20% in Site 5. In case of the number of species in the shrub layer, Site 1 was 11 species, 8 species in Site 2, 6 species in Site 3, 10 species in Site 4, 7 species in Site 5, and in the herb layer, Site 1 was 22 species, 25 species in Site 2, 12 species in Site 3 and Site 4 each and 11 species in Site 5. In the dominant species, the shrub layer was Lespedeza maritima(Site 1, 2), Quercus serrata(Site 3), Quercus serrata and Lespedeza bicolor(Site 4) and Styrax japonicus(Site 5), the herb layer was Miscanthus sinensis var. purpurascens(Site 1, 3), Pteridium aquilinum var. latiusculum and Carex humilis var. nana(Site 2), Quercus serrata(Site 4) and Carex humilis var. nana andS tyrax japonicus(Site 5). The number of vascular plants was summarized as 91 taxa including 35 families, 69 genera, 78 species, 2 subspecies, 10 varieties and 1 form.

냉각.윤활방식 변화에 따른 가공면의 미시적 정밀도 평가 (Microscopic precision evaluation of machined surface according to the variation of cooling and lubrication method)

  • 황인옥;권동희;강명창;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.225-226
    • /
    • 2006
  • As the technique of high-speed end-milling is widely adopted to machining field. The investigation for microscopic precision of workpiece is necessary for machinability evolution. The environmental pollution has become a big problem in industry and many researcher have investigated in order to preserve the environment. The environmentally conscious machining and technology have more important position in machining process. In the milling process, the cutting fluid has greatly bad influence on the environment. The damaged layer affect mold life and machine parts in machining. In this study, the cutting force, the surface roughness, micro hardness and residual stress is evaluated according to machining environment. Finally, it is obtained that the characteristics of damaged layer in environmentally conscious machining is better than that in conventional machining using cutting fluid.

  • PDF

강 구조물에 대한 폴리아닐린 함유도료의 방청특성 (Anti-Corrosion Characteristics of Steel Structures with Polyaniline Anti-Corrosive Coatings)

  • 송민경;공승대;오은하;윤철훈;김윤신;임호섭
    • 한국환경보건학회지
    • /
    • 제36권3호
    • /
    • pp.236-246
    • /
    • 2010
  • In preparative anti-corrosive coating experiments, polyaniline was obtained by reacting an oxidizing agent with the monomer aniline. Further, the primer coating was prepared using a variety of widely-used materials such as urethane resin. For the top coating, epoxy resin and acrylic urethane resin were used. Characteristics of the coatings were assessed according to KS and ASTM specifications, and the structure of the polyaniline was characterized using FT-IR and TGA. For analysis of anti-corrosive properties in salt-spray experiments, measurements of the oxidation state of iron and surface atomic analysis were conducted using XPS and SEM-EDX. Unlike general anti-corrosive coatings which exhibit anti-corrosive effects only as a primer coating, the anti-corrosive coatings using polyaniline as the anti-corrosive pigment showed a marked synergistic effect with the top coatings. In other words, the top coatings not only produce a fine view effect, but also increase, through interaction with the primer coatings, the resistance to diffusion of corrosive factors from the external environment. It was also found that, unlike the heavy metal oxide-forming layer of the passive barrier alone, the polyaniline anti-corrosive pigment oxidized iron at the interface with the iron substrate to form a passive barrier in the oxidic layer, and itself formed a potential barrier layer with anti-corrosive factors from the external environment. Although the passive layer was damaged, the damaged area did not become completely oxidized iron; on the contrary, it showed a tendency to reduction. This can be interpreted such that a passive layer is formed again on the damaged area, and that at the same time there is a tendency to self-healing.

FRP Confinement of Heat-Damaged Circular RC Columns

  • Al-Nimry, Hanan Suliman;Ghanem, Aseel Mohammad
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권1호
    • /
    • pp.115-133
    • /
    • 2017
  • To investigate the effectiveness of using fiber reinforced polymer (FRP) sheets in confining heat-damaged columns, 15 circular RC column specimens were tested under axial compression. The effects of heating duration, stiffness and thickness of the FRP wrapping sheets were examined. Two specimen groups, six each, were subjected to elevated temperatures of $500^{\circ}C$ for 2 and 3 h, respectively. Eight of the heat-damaged specimens were wrapped with unidirectional carbon and glass FRP sheets. Test results confirmed that elevated temperatures adversely affect the axial load resistance and stiffness of the columns while increasing their ductility and toughness. Full wrapping with FRP sheets increased the axial load capacity and toughness of the damaged columns. A single layer of the carbon sheets managed to restore the original axial resistance of the columns heated for 2 h yet, two layers were needed to restore the axial resistance of columns heated for 3 h. Glass FRP sheets were found to be less effective; using two layers of glass sheets managed to restore the axial load carrying capacity of columns heated for 2 h only. Confining the heat-damaged columns with FRP circumferential wraps failed in recovering the original axial stiffness of the columns. Test results confirmed that FRP-confining models adopted by international design guidelines should address the increased confinement efficiency in heat-damaged circular RC columns.