• 제목/요약/키워드: Damage mechanisms

검색결과 815건 처리시간 0.029초

산업용 인버터의 가속 피로수명 평가에 관한 연구 (A Study on Accelerated Fatigue Life Testing for Industrial Inverter)

  • 이상훈;김원진
    • 한국기계가공학회지
    • /
    • 제21권6호
    • /
    • pp.67-73
    • /
    • 2022
  • Industrial inverters are used in a variety of fields for electric power supply. They may be exposed to vibration and heat once they are installed. This study focused on a framework of accelerated life testing of an industrial inverter considering fatigue damage as the primary source of deterioration. Instead of analyzing detailed failure mechanisms and the product's vulnerability to them, the potential of fatigue failure is considered using the fatigue damage spectrum calculated from the environmental vibration signals. The acceleration and temperature data were gathered using field measurement and spectral analysis was conducted to calculate the vibration signal's power spectral density (PSD). The fatigue damage spectrum is then calculated from the input PSD data and is used to design an accelerated fatigue life testing. The PSD for the shaker table test is derived that has the equivalent fatigue damage to the original input signal. The tests were performed considering the combined effect of random vibration and elevated temperature, and the product passed all the planned tests. It was successfully demonstrated that the inverter used in this study could survive environmental vibration up to its guarantee period. The fatigue damage spectrum can effectively be used to design accelerated fatigue life testing.

Effect of roof diaphragm on masonry structures under dynamic loading

  • Sathiparan, Navaratnarajah
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.351-366
    • /
    • 2016
  • The structural collapse of masonry structure under dynamic loading displays many possible failure mechanisms often related to interaction between structural components. Roof collapse is one of the major damage mechanisms observed in masonry structures during an earthquake. Better connection between the roof diaphragm and walls may be preventing roof collapse, but it can affect other failure mechanisms. In spite of this fact, less attention has been paid to the influence of the roof diaphragm effect on masonry structures and little research has been implemented in this field. In the present study, the roof diaphragm effect on the unreinforced masonry structure under dynamic loading has been experimentally investigated. Three one-quarter scale one-story adobe masonry house models with different roof conditions have been tested by subjecting them to sinusoid loading on a shaking table simulator. Phenomena such as failure pattern, dynamic performance of masonry structure were examined.

나노 패터닝을 위한 이온빔-고체 상호작용 분석 (Analysis of Ion Beam-Solid Interactions for Nano Fabrication)

  • 김흥배
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.581-584
    • /
    • 2005
  • Ion beam processing is one of the key technologies to realize mastless and resistless sub 50nm nano fabrication. Unwanted effects, however, may occur since an energetic ion can interact with a target surface in various ways. Depending on the ion energy, the interaction can be swelling, deposition, sputtering, re-deposition, implantation, damage, backscattering and nuclear reaction. Sputtering is the fundamental mechanisms in ion beam induced direct patterning. Re-deposition and backscattering are unwanted mechanisms to avoid. Therefore understanding of ion beam-solid interaction should be advanced for further ion beam related research. In this paper we simulate some important interaction mechanisms between energetic incident ions and solid surfaces and the results are compared with experimental data. The simulation results are agreed well with experimental data.

  • PDF

Degradation mechanisms of concrete subjected to combined environmental and mechanical actions: a review and perspective

  • Ye, Hailong;Jin, Nanguo
    • Computers and Concrete
    • /
    • 제23권2호
    • /
    • pp.107-119
    • /
    • 2019
  • In-service reinforced concrete structures are simultaneously subjected to a combination of multi-deterioration environmental actions and mechanical loads. The combination of two or more deteriorative actions in environments can potentially accelerate the degradation and aging of concrete materials and structures. This paper reviews the coupling and synergistic mechanisms among various deteriorative driving forces (e.g. chloride salts- and carbonation-induced reinforcement corrosion, cyclic freeze-thaw action, alkali-silica reaction, and sulfate attack). In addition, the effects of mechanical loads on detrimental environmental factors are discussed, focusing on the transport properties and damage evolution in concrete. Recommendations for advancing current testing methods and predictive modeling on assessing the long-term durability of concrete with consideration of the coupling effects are provided.

Protective Effect Against Hydroxyl Radical-induced DNA Damage and Antioxidant Mechanism of [6]-gingerol: A Chemical Study

  • Lin, Jing;Li, Xican;Chen, Li;Lu, Weizhao;Chen, Xianwen;Han, Lu;Chen, Dongfeng
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1633-1638
    • /
    • 2014
  • [6]-Gingerol is known as the major bioactive constituent of ginger. In the study, it was observed to effectively protect against ${\bullet}OH$-induced DNA damage ($IC_{50}$ $328.60{\pm}24.41{\mu}M$). Antioxidant assays indicated that [6]-gingerol could efficiently scavenge various free radicals, including ${\bullet}OH$ radical ($IC_{50}$ $70.39{\pm}1.23{\mu}M$), ${\bullet}O_2{^-}$ radical ($IC_{50}$ $228.40{\pm}9.20{\mu}M$), $DPPH{\bullet}$radical ($IC_{50}$ $27.35{\pm}1.44{\mu}M$), and $ABTS{^+}{\bullet}$radical ($IC_{50}$ $2.53{\pm}0.070{\mu}M$), and reduce $Cu^{2+}$ ion ($IC_{50}$ $11.97{\pm}0.68{\mu}M$). In order to investigate the possible mechanism, the reaction product of [6]-gingerol and $DPPH{\bullet}$ radical was further measured using HPLC combined mass spectrometry. The product showed a molecular ion peak at m/z 316 $[M+Na]^+$, and diagnostic fragment loss (m/z 28) for quinone. On this basis, it can be concluded that: (i) [6]-gingerol can effectively protect against ${\bullet}OH$-induced DNA damage; (ii) a possible mechanism for [6]-gingerol to protect against oxidative damage is ${\bullet}OH$ radical scavenging; (iii) [6]-gingerol scavenges ${\bullet}OH$ radical through hydrogen atom ($H{\bullet}$) transfer (HAT) and sequential electron (e) proton transfer (SEPT) mechanisms; and (iv) both mechanisms make [6]-gingerol be oxidized to semi-quinone or quinone forms.

Effect of Prior Muscle Contraction or Passive Stretching on Eccentric-Induced Muscle Damage

  • Choi, Seung-Jun
    • PNF and Movement
    • /
    • 제17권3호
    • /
    • pp.487-497
    • /
    • 2019
  • Purpose: This tutorial review investigated the effect of prior fatigue and passive stretches on eccentric contraction-induced muscle injuries, as well as the underlying mechanisms of eccentric contraction-related injuries. Methods: Contraction-induced muscle damage is the most common disabling problem in sports and routines. The mechanisms underlying the pathology and prevention of muscle damage lessened by prior fatigue or stretches are critical in assessing musculoskeletal injuries. Even though there are treatments to reduce eccentric contraction-induced muscle injuries, fatigue negatively influences them. Therefore, we reviewed previous studies on eccentric contraction-induced muscle injuries with prior treatments using the MEDLINE and PubMed databases. Results: Prior passive stretching had a preventative and therapeutic effect, but prior lengthening contractions did not. On the other hand, prior isometric contractions involving relatively small forces may not provide a sufficient stimulus to induce protection. As a result, high force isometric contractions may be necessary. The studies supported the positive effects of prior fatigue, concluding that it was a factor in determining the amount of damage caused by eccentric exercise. This was due to a reduction in force and increased temperature. Studies that did not support the positive effects of prior fatigue concluded that a shift in optimal length to a longer length and reduced energy absorption during lengthening are evidence that fatigue is not related to muscle injuries induced by lengthening. Conclusion: The variability of the experiment models, conditions, muscles, and treatment methods make it necessary to interpret the conditions of previous studies carefully and draw conclusions without making direct comparisons. Thus, additional studies should be carefully conducted to investigate the positive effect of fatigue on lengthening.

연속발진 레이저에 의한 CCD 영상센서의 손상 분석 (Damage Analysis of CCD Image Sensor Irradiated by Continuous Wave Laser)

  • 윤성희;장경영;신완순
    • 한국군사과학기술학회지
    • /
    • 제19권6호
    • /
    • pp.690-697
    • /
    • 2016
  • EOIS(electro-optical imaging system) is the main target of the laser weapon. Specially, the image sensor will be vulnerable because EOIS focuses the incident laser beam onto the image sensor. Accordingly, the laser-induced damage of the image sensor needs to be identified for the counter-measure against the laser attack. In this study, the laser-induced damage of the CCD image sensor irradiated by the CW(continuous wave) NIR(near infrared) laser was experimentally investigated and mechanisms of those damage occurrences were analyzed. In the experiment, the near infrared CW fiber laser was used as a laser source. As the fluence, which is the product of the irradiance and the irradiation time, increased, the permanent damages such as discoloration and breakdown appeared sequentially. The discoloration occurred when the color filter was damaged and then the breakdown occurred when the photodiode and substrate were damaged. From the experimental results, LIDTs(laser-induced damage thresholds) of damages were roughly determined.

Finite element investigation of the joints in precast concrete pavement

  • Sadeghi, Vahid;Hesami, Saeid
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.547-557
    • /
    • 2018
  • This paper measures the mechanical response of precast pavement joints under moving axle loads using the finite-element method, and the models were validated with results of field tests. In order to increase the ability to use the non-linear FE analysis for design and assessment of precast pavement subjected to moving axle load, this paper investigated the effects of different load transfer between the slabs using the ABAQUS finite-element package to solve the nonlinear explicit model equations. The assembly of the panels using dowels and groove-tongue keys has been studied to assess the efficiency of keyway joint system. Concrete damage plasticity model was used to calculate the effects of permanent damages related to the failure mechanisms. With aggregate interlock as the only load transferring system, Load transfer efficiency (LTE) is not acceptable when the axle load reaches to slab joints. The Finite-element modelling (FEM) results showed that keyway joints significantly reduced tensile stresses developed at the mid-slab. Increasing the thickness of the tongue the LTE was improved but with increasing the height of the tongue the LTE was decreased. Stresses are transferred to the adjacent slab efficiently when dowels are embedded within the model. When the axle load approaches joints, tensile damage occurs sooner than compressive damage, but the damage rate remains constant, then compressive damage increases significantly and become the major form of distress under the dowels.

화강암질암에 대한 미시적에서 거시적 손상역학의 해석 : 실험 및 이론 (Analysis of Micro- to Macro-Mechanics in Granitic Rock: Experimental Observation and Theoretical Consideration)

  • 정교철
    • 자원환경지질
    • /
    • 제27권5호
    • /
    • pp.499-505
    • /
    • 1994
  • 기존 미소결함에서의 국소적 응력집중은 새로운 미시적 손상의 원인이 되고, 이러한 미시적 손상은 또한 거시적 손상으로 발달하게 된다. 이들 미시적 손상에서 거시적 손상으로의 바달은 그 암석 및 암반의 변형특성으로 나타난다. 지금까지 응력하에서의 미소크랙의 거동에 대한 연구는 많이 되어왔으나, 실제암석의 파괴전 상태에서 미소크랙거동에 대한 역학적 해석은 아직 미비한 실정이다. 본 연구에서는 새로이 개발한 시험장치에 의한 정밀한 관찰로 손상 발달에 대한 이해를 더하였으며, 수학적 균질화 이론에 의해 수치해석 함으로서 그 역학성을 검토하였다.

  • PDF

항산화제 및 금속착화합물이 1,2,4-benzenetriol에 의해 유도된 HL-60 세포의 DNA 손상에 대한 보호 효과 (Effect of Antioxidants and Chelating Agents on 1,2,4-benzenetriol-induced DNA damage in HL-60 cells analysed by alkaline comet assay)

  • 김선진;정해원
    • 한국환경성돌연변이발암원학회지
    • /
    • 제20권1호
    • /
    • pp.7-13
    • /
    • 2000
  • The mechanisms of benzene toxicity is not fully elucidated, although the metabolism of benzene is very well understood. In order to study the mechanism of benzene toxicity, we investigated DNA damage induced by benzene metabolite, 1,2,4-benzenetriol (BT) in HL-60 cells by alkaline comet assay. To investigate the mechanism of cellular DNA damage induced by BT, the cells were treated with antioxidant such as vitamin C, SOD, catalase, and chelating agent such as deferoxamine (DFO), bathocuproinedisulfonic acid (BCDS). BT induced DNA damage in dose-dependent manner at concentration between 10$\mu\textrm{m}$ and 100$\mu\textrm{m}$. The antioxidant vitamin C itself induced DNA damage at higher concentration. The DNA damage induced by BT in HL-60 cells was protected at low concentraiton of vitamin C whereas no protective effect was found at high concentration. In hibitory effect of SOD on DNA damage by BT was observed and this suggested that BT produce superoxide anion (O2-) causing DNA damage. Catalase protected BT-induced DNA damage suggesting that BT produce H2O2 during autooxidation of BT. Both Fe(II)-specific cheiating agent, deferoxamine (DFO) and Cu(I)-specific chelating agent, bathocuproinedisulfonic acid (BCDS) inhibited BT0induced DNA damage. This suggested that DNA damage was caused by active species which was produced DAN damage. This suggested that DNA damage was caused by active species which was produced by the autooxidation of BT in the presence of Cu(II) and Fe(III). These findings suggest that reactive oxygen species play an important role in the mechanism of toxicity induced by benzene metabolites.