• 제목/요약/키워드: Damage Propagation

검색결과 488건 처리시간 0.024초

Finite Element Model to Simulate Crack Propagation Using Interface Elements and Its Verification in Tensile Test

  • Chu, Shi;Yu, Luo;Zhen, Chen
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권1호
    • /
    • pp.36-43
    • /
    • 2015
  • Since the crack generation and its propagation caused by welding defects is one of the main hull damage patterns, the simulation of crack propagation process has an important significance for ship safety. Based on interface element method, a finite element model to simulate crack propagation is studied in the paper. A Lennard-Jones type potential function is employed to define potential energy of the interface element. Tensile tests of steel flat plates with initial central crack are carried out. Surface energy density and spring critical stress that are suitable for the simulation of crack propagation are determined by comparing numerical calculation and tests results. Based on a large number of simulation results, the curve of simulation correction parameter plotted against the crack length is calculated.

A novel method for generation and prediction of crack propagation in gravity dams

  • Zhang, Kefan;Lu, Fangyun;Peng, Yong;Li, Xiangyu
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.665-675
    • /
    • 2022
  • The safety problems of giant hydraulic structures such as dams caused by terrorist attacks, earthquakes, and wars often have an important impact on a country's economy and people's livelihood. For the national defense department, timely and effective assessment of damage to or impending damage to dams and other structures is an important issue related to the safety of people's lives and property. In the field of damage assessment and vulnerability analysis, it is usually necessary to give the damage assessment results within a few minutes to determine the physical damage (crack length, crater size, etc.) and functional damage (decreased power generation capacity, dam stability descent, etc.), so that other defense and security departments can take corresponding measures to control potential other hazards. Although traditional numerical calculation methods can accurately calculate the crack length and crater size under certain combat conditions, it usually takes a long time and is not suitable for rapid damage assessment. In order to solve similar problems, this article combines simulation calculation methods with machine learning technology interdisciplinary. First, the common concrete gravity dam shape was selected as the simulation calculation object, and XFEM (Extended Finite Element Method) was used to simulate and calculate 19 cracks with different initial positions. Then, an LSTM (Long-Short Term Memory) machine learning model was established. 15 crack paths were selected as the training set and others were set for test. At last, the LSTM model was trained by the training set, and the prediction results on the crack path were compared with the test set. The results show that this method can be used to predict the crack propagation path rapidly and accurately. In general, this article explores the application of machine learning related technologies in the field of mechanics. It has broad application prospects in the fields of damage assessment and vulnerability analysis.

Analysis of Laser-protection Performance of Asymmetric-phase-mask Wavefront-coding Imaging Systems

  • Yangliang, Li;Qing, Ye;Lei, Wang;Hao, Zhang;Yunlong, Wu;Xian'an, Dou;Xiaoquan, Sun
    • Current Optics and Photonics
    • /
    • 제7권1호
    • /
    • pp.1-14
    • /
    • 2023
  • Wavefront-coding imaging can achieve high-quality imaging along with a wide range of defocus. In this paper, the anti-laser detection and damage performance of wavefront-coding imaging systems using different asymmetric phase masks are studied, through modeling and simulation. Based on FresnelKirchhoff diffraction theory, the laser-propagation model of the wavefront-coding imaging system is established. The model uses defocus distance rather than wave aberration to characterize the degree of defocus of an imaging system. Then, based on a given defocus range, an optimization method based on Fisher information is used to determine the optimal phase-mask parameters. Finally, the anti-laser detection and damage performance of asymmetric phase masks at different defocus distances and propagation distances are simulated and analyzed. When studying the influence of defocus distance, compared to conventional imaging, the maximum single-pixel receiving power and echo-detection receiving power of asymmetric phase masks are reduced by about one and two orders of magnitude respectively. When exploring the influence of propagation distance, the maximum single-pixel receiving power of asymmetric phase masks decreases by about one order of magnitude and remains stable, and the echodetection receiving power gradually decreases with increasing propagation distance, until it approaches zero.

콘크리트 내부결함 탐지를 위한 초음파 전파 해석 (Ultrasonic Wave Propagation Analysis for Damage Detection in Heterogeneous Concrete Materials)

  • 정휘권;이인규;김재민
    • 한국전산구조공학회논문집
    • /
    • 제33권4호
    • /
    • pp.225-235
    • /
    • 2020
  • 초음파 탐상은 다양한 콘크리트 구조물의 비파괴검사에서 활용된다. 본 연구에서는 골재형상을 고려한 골재-모르타르 모델 생성과 초음파 전파 해석을 수행하였다. 실제 골재형상을 반영하기 위해 이미지처리를 통한 골재-모르타르 단면으로부터 모르타르와 골재 영역을 파악하고, 영역 경계형상을 보존하면서 격자를 생성하는 기법을 개발하였다. 개발된 기법에서는 모든 격자가 4각형으로 생성된다. 골재-모르타르 모델을 통해 초음파 전파 해석을 수행하였고 모델을 반무한체로 간주하기 위해 CALM 기반 경계흡수 조건을 적용하였다. 골재 및 결함을 포함한 이미지로부터 격자를 생성한 뒤, 결함 영역에 포함된 격자를 제거하여 공극결함을 모사하였다. 본격적인 결함탐지 전 선행 해석을 통해 모델 동특성을 고려한 적절한 가진 주파수를 결정 및 가진 신호형상을 설계하였다. 이후 case 별초음파 전파 해석을 통해 신호를 획득하고 신호 에너지 맵핑 작업을 통해 내부 결함을 가시화 하였다. 가시화 결과, 골재에 의한 다수반사 및 산란현상이 관찰되지만 결함부에서 신호 에너지는 가장 높게 나타났으며 모든 해석 case에서 결함위치 추정이 가능하였다. 또한 균열의 경우 형상파악도 가능하였다.

Cohesive Interface Model on Concrete Materials

  • Rhee In-Kyu;Roh Young-Sook
    • 콘크리트학회논문집
    • /
    • 제17권6호
    • /
    • pp.1053-1064
    • /
    • 2005
  • The mechanical damage of concrete is normally attributed to the formation of microcracks and their propagation and coalescence into macroscopic cracks. This physical degradation is caused from progressive and hierarchical damage of the microstructure due to debonding and slip along bimaterial interfaces at the mesoscale. Their growth and coalescence leads to initiation of hairline discrete cracks at the mesoscale. Eventually, single or multiple major discrete cracks develop at the macroscale. In this paper, from this conceptual model of mechanical damage in concrete, the computational efforts were made in order to characterize physical cracks and how to quantify the damage of concrete materials within the laws of thermodynamics with the aid of interface element in traditional finite element methodology. One dimensional effective traction/jump constitutive interface law is introduced in order to accommodate the normal opening and tangential slips on the interfaces between different materials(adhesion) or similar materials(cohesion) in two and three dimensional problems. Mode I failure and mixed mode failure of various geometries and boundary conditions are discussed in the sense of crack propagation and their spent of fracture energy under monotonic displacement control.

A Review on the Effects of Earthborne Vibrations and the Mitigation Measures

  • Nam, Boo Hyun;Kim, Jinyoung;An, Jinwoo;Kim, Bumjoo
    • International Journal of Railway
    • /
    • 제6권3호
    • /
    • pp.95-106
    • /
    • 2013
  • Earthborne vibrations are induced by construction operation such as pile driving, roadbed compaction, and blasting and also by transit activities such as truck and trains. The earthborne vibration creates the stress waves traveling outward from the source and can structurally damage nearby buildings and structures in the forms of direct damage to structure and damage due to dynamic settlement. The wave propagation characteristics depends on impact or vibration energy, distance from the source, and soil characteristics. The aim of this paper is to provide a comprehensive review on the mechanistic of earthborne vibration and the current practice of vibration control and mitigation measures. The paper describes the state of knowledge in the areas of: (1) mechanics of earthborne vibration, (2) damage mechanism by earthborne vibration, (3) calculation, prediction of ground vibration, (4) the criteria of vibration limits, (5) vibration mitigation measures and their performance, and (6) the current practice of vibration control and mitigation measures.

파동전파특성에 기초한 구조 건전도 모니터링 (Structural Health Monitoring Based on Wave Propagation Characteristics)

  • 김승준;박준홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.311-314
    • /
    • 2007
  • The experimental method of measuring dynamic properties of structures was presented. The method is based on the flexural wave propagation characteristics. Using the method, change in structural dynamic properties due to damage is measured. The crack has much more significant impact on the strain energy than the inertial effects. From this, the sensitivity of the dynamic stiffness on the crack location is estimated by calculating the strain energy. When the wave propagates, the strain and kinetic energies shows cyclic changed over space. The crack that occurred at locations where the wave energy is in the form of the potential energy affected most significantly the wave propagation characteristics. The effects of crack location on the wave propagation were used to determine the crack location.

  • PDF

A non-destructive method for elliptical cracks identification in shafts based on wave propagation signals and genetic algorithms

  • Munoz-Abella, Belen;Rubio, Lourdes;Rubio, Patricia
    • Smart Structures and Systems
    • /
    • 제10권1호
    • /
    • pp.47-65
    • /
    • 2012
  • The presence of crack-like defects in mechanical and structural elements produces failures during their service life that in some cases can be catastrophic. So, the early detection of the fatigue cracks is particularly important because they grow rapidly, with a propagation velocity that increases exponentially, and may lead to long out-of-service periods, heavy damages of machines and severe economic consequences. In this work, a non-destructive method for the detection and identification of elliptical cracks in shafts based on stress wave propagation is proposed. The propagation of a stress wave in a cracked shaft has been numerically analyzed and numerical results have been used to detect and identify the crack through the genetic algorithm optimization method. The results obtained in this work allow the development of an on-line method for damage detection and identification for cracked shaft-like components using an easy and portable dynamic testing device.

콘크리트의 이방성 손상-소성 모델 (Anisotropic Continum Damage-Plastic Model for Concrete)

  • 변근주;송하원;이기성;김종우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.91-96
    • /
    • 1994
  • The growth and propagation of microcracks existed in concrete cause failure of concrete. This is called "damage". The concepts of two principles, equivalent strain principle and equivalent energy principle, are reviewed and compared in the case of uniaxial compressior to concrete. The damage evolution law and constitutive equation are derived by using the Helmholz free energy and the dissipation potential by means of the thermodynamic principles.rinciples.

  • PDF

방사균열 모델을 적용한 암반 발파에 의한 손상 영역 예측 (Prediction of the Damage Zone Induced by Rock Blasting Using a Radial Crack Model)

  • 심영종;조계춘;김홍택
    • 한국지반공학회논문집
    • /
    • 제22권11호
    • /
    • pp.55-64
    • /
    • 2006
  • 터널과 같은 지하 공동 굴착을 위한 발파로 주변에 손상이 발생하였을 경우, 암반의 역학적 및 수리적 불안정성을 유발하기 때문에 암반의 최종손상영역의 예측은 매우 중요하다 그러나 복잡한 발파거동으로 인해 손상영역을 적절히 예측하는 데에는 상당한 어려움이 따르고 있다. 이러한 어려움을 효과적으로 해결하기 위해 발파하중을 응력파와 가스압으로 분리한 많은 연구가 진행되었다. 응력파는 발파공 주위에 분쇄환(crushing annulus)과 파쇄균열대(fracture zone)를 형성시키며, 상당시간 지속되는 준정적인 가스는 파쇄균열대의 닫힌 균열내부에 침투하여 균열을 다시 진행시키는 역할을 하게 된다. 즉, 가스압은 최종적으로 암반에 손상을 가하는데 기여를 한다. 따라서 본 논문은 이러한 가스압에 의해 생성되는 균열의 최종 진행 길이를 예측함으로써 발파로 인한 최종 손상영역을 간단하게 예측할 수 있는 방법을 제시하고자 한다. 이를 위해 균질한 무한 탄성평면에서 발파공 주위에 대칭으로 형성되는 방사균열을 모델로 사용하였다. 이 모델에서 균열이 진행할 수 있는 조건과 가스의 질량이 일정하다는 두 가지 조건을 사용하였다. 그 결과 응력확대계수는 균열이 진행할수록 감소하여 최종균열의 길이를 산정하였으며, 또한 발파공에 작용하는 압력도 감소하는 것을 확인하였다.