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ABSTRACT

The mechanical damage of concrete is normally attributed to the formation of microcracks and their
propagation and coalescence into macroscopic cracks. This physical degradation is caused from progressive
and hierarchical damage of the microstructure due to debonding and slip along bimaterial interfaces at the
mesoscale. Their growth and coalescence leads to initiation of hairline discrete cracks at the mesoscale.
Eventually, single or multiple major discrete cracks develop at the macroscale. In this paper, from this con-
ceptual model of mechanical damage in concrete, the computational efforts were made in order to character-
ize physical cracks and how to quantify the damage of concrete materials within the laws of thermodynamics
with the aid of interface element in traditional finite element methodology. One dimensional effective trac-
tion/jump constitutive interface law is introduced in order to accommodate the normal opening and tangential
slips on the interfaces between different materials(adhesion) or similar materials(cohesion) in two and three
dimensional problems. Mode I failure and mixed mode failure of various geometries and boundary condi-
tions are discussed in the sense of crack propagation and their spent of fracture energy under monotonic dis-

placement control.

Keywords : crack, constitutive model, interface element, cohesion, fracture energy

1. Introduction

The response behavior of cohesive and frictional materi-
als such as concrete in the nonlinear range, particularly
close to peak load and in the post-peak region, is extremely
complex and has been intensively investigated in the past
decades. A great variety of models has been proposed
which is of little surprise and reflects the difficulties en-
countered, when one attempts to describe the macroscopic
as well as mesoscopic response behavior by phenomenol-
ogical constitutive models®. It reflects the uncertainties in
the interpretation of apparent failure mechanism in labora-
tory experiments with respect to the governing failure
mechanism and their significance. Macroscopic response
phenomena such as brittle failure or ductile softening are
generally attributed to microstructural processes which ap-
pears to be one of the most important issues in view of con-
stitutive modeling of strain softening materials™'>*. In this
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paper, a simple one dimensional effective traction/jump
relation will be used for assessing the damage of lumped
line and surface interface elements which also can not be
simpler than C° element type.

Since the pioneering work of Ngo and Scoldelis™ for fi-
nite element analysis of reinforced concrete structures, the
discrete crack concept is widely considered for micro- and
meso- and macro-scale analysis of multi-material structures
with the aid of development of computer hardware and
software system. Modeling of discontinuities embedded in
a continuous system requires a finite element technology
which simulates the material interface and contains realistic
constitutive properties. It is nontrivial to explore the feasi-
bility of modeling the microstructural processes and inves-
tigate their influence on macroscopic response phenomena
emphasizing the composite character of concrete. To this
end, although this objective demands the material and mor-
phological heterogeneities of concrete such as multiple
phase composites, one can consider that the concrete mate-
rial is isotropic and statistically homogeneous for simplicity.
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Therefore, the level of observation is restricted in purely
‘cohesive’ behavior of concrete material and plain concrete
structures.

2. Mechanical damage in concrete

2.1 Concrete cracking

At the atomic level of observation, there are two types of
bonds: (1) primary bonds(strong bonds), (2) secondary
bonds(weak bonds). Primary bonds are classified as metal-
lic, covalent and ionic bonds. Like ceramic, concrete may
be classified to exhibit ionic bonds at the microscopic level
of observation. In order to look at the insight of this ionic
bonds, Coloumb’s law of repulsive and attractive forces
between atoms may represent the damage initiation as (a)
separation in the form of debonding, (b) slip of these atoms
by means of changing their equilibrium distance ¥ . In
order to understand, let us recall the typical example of
ionic bond. Fig. 1 shows the example of ionic bonds of
NaCl, or table salt. Fig. 2(a) and 2(b) shows the bond en-
ergy diagram and their second derivatives relation(stress-
strain relation), respectively.

Starting from the damage mechanism associated with
bonding energy argument at the microscopic level, this
stress-strain relationship in Fig. 2(b) will be adopted di-
rectly later on the interface constitutive law. Now let us
move on our observation frame to macroscale concrete
crack. The phenomenological concept of a crack in brittle
materials can traced back to a paper by Griffith(1920). Until
then there was no explanation available for the known large
discrepancy between the theoretically predicted and real
tensile strengths of hard brittle materials. Griffith was the
first to show that the real tensile strength of brittle materials
was significantly lower than their theoretically predicted
strength because they contained microcracks, e.g. defects,
pores, voids, dislocations, etc.

Cracks introduce high stress concentration near their tips
in an elastic brittle material. This is best illustrated by con-
sidering a sheet made of an elastic brittle material, such as
concrete (Fig. 3)

The adjacent regions near crack tips in Fig. 3 which ex-
hibit huge stress concentrations are developed. Griffith

Fig. 1 Primary atomic bonds: lonic bonds(NaCl)
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(1920) already noted the inconsistency between the linear
elastic fracture model and the real physical situation
prevailing at the crack tip. The first attempt at including the
cohesive forces in the crack tip region within the limit of
elasticity theory was made by Barenblatt”. He assume that
a large cohesive forces o(x) acts in a small zone of length
d , so-called cohesive zone near the crack tip such that the
crack opening displacement closes smoothly. The distribu-
tion of these cohesive forces is generally unknown. After
this Barenblatt’s idea, the first nonlinear theory of fracture
mechanics for steel was proposed by Dugdale et al®. by
defining the yield strength near crack tips. For concrete,
Hillerborg” proposed the tension softening fracture process
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zone through a fictitious crack ahead of the pre-existing
crack whose faces are acted upon by certain closing stresses
such that there is no stress concentration at the tip of this
extended crack(Figs. 4. and 5). It is immediately apparent
that this condition is satisfied if faces of the crack close
smoothly. The term ‘fictitious’ is used to underline the fact
that this closed crack cannot be continuous with full separa-
tion of its faces, as in a real traction-free crack.

2.2 Material laws for cohesive interfacial crack

A nominal traction field t (force/unit reference area) has
both normal and shearing components in general. Two ma-
terial points A and B, initially on opposite sides of the inter-
faces, are considered and the interfacial traction is taken to
depend only on the displacement difference across the inter-
face, [lul},, in Fig. 6. At each point of the interface,
the generalized traction t and the displacement jump
[lal] are defined as,

[lull]=R-[lal],, where R=Rotation matrix (1)

t=R"t, )

O’(O‘)‘

- %6(0)

s
w=|"o(s)as
= Total Swurface Energyv(2y)

Fig. 4 Tension softening of concrete materials®
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Fig. 5 Hillerborg’s fictitious crack model®

B T et i Gl s}

Cohesive Interface Model on Concrete Materials

The remaining task is how to characterize the traction-
jump relationship in concrete materials. In the beginning of
this chapter, the sodium-chloride(NaCl) example shows a
exponential stress-strain relation in repulsion and quasi-
linear in attraction as shown in Fig. 2(b). In order to upscale
thi kind of interatomic relation the material point of con-
crete, the tension and compression behavior are described
as the repulsion and attraction phenomenon. Needleman et
al'>*® proposed the hyperelasticity type of interface consti-
tutive relation.

The existence of potential energy from the beginning
and their first and second derivatives introduce the force-
displacement and stress-strain relation respectively.
However, in spite of convenience, this existence of po-
tential shows that the work of separation is independent
of the path or history that material point has experienced
so far(Fig 7).

=gl == "Tr,dllul), +rdllull, +rdlull] (3

Camacho and Ortiz® suggested to consider the effec-
tive stress intensity factor for mixed-mode fracture
(Margolin, 1984;Diens,1986), which leads to the fracture
criteria,

Ein R Crahaciva clirfanrs trosiavaina A 9N hadlL18)

(a) Normal separation (b) Tangential slip law®
Fig. 7 Potential ¢([lu 1], ,[lul],):
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o, =0 +B 7 <0, )
0y =yB.(rl-ulof) <o, 5)

where ﬂr is a shear stress factor, [Lis the friction
coefficent and O is a fracture stress. In order to es-
timate O, they assume that the fracture toughness
K, is a function with half-crack length a_ (Figs. 8
and 9).

Tvergaard and Hutchinson®® have studied the role of
plastic deformation in amplifying crack growth resistance
in ductile failure using a cohesive zone model. They ac-
count for the interaction of the fracture process with the
surrounding plastic zone by replacing the fracture process
by a traction-separation relation applied to the plane of the
crack which, in turn, is embedded within an elastic-plastic
continuum(Fig. 10).

Since we are interested in damage measure at the mate-
rial level in the spirit of damage mechanics such as Kach-
anov®, The proposal of Camacho and Ortiz” looks simple-
and logical to characterize the concrete interface laws.
Now we attempt to establish this idea with combination of
material softening and damage measure for our own pur-
pose.

e
g
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Fig. 8 Tensile cohesive relation by Camcho and Ortiz?
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Fig. 9 Shear cohesive relation by Camacho and Ortiz®
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gaad and Hutchinson(1992) by courtesy of
Scheider(2001)

3. Cohesive interface model in concretes:

3.1 Nodal constraints and interface element

Introducing multi-freedom constraints(MFCs) by chang-
ing the assembled master stiffness equations produce a
modified system of equations. The modified system is he
one submitted to the equation solver. Three methods for
treating MFCs are (a) master-slave elimination, (b) pen: Ity
augmentation and (c) Largrangian multiplier adjunctijn.
These nodal constraints in linear algebra are physically [e-
flected by nature of interface element which will be usec|to
model a potential cohesive interfacial crack. Naturally, p'n_!:n-
alty augmentation(similary with Largrangian multiplier
approach) approach will discuss in the conjunction with
interface formulation. In the presence of discontinuities the
variational boundary problem to be solved is subjected to
unilateral constraints. For instance, two bodies may only
separate but must not interpenetrate each other along
their common contact surface I,

glu, > [lull,, Viel, (6)

where i is the number of nodes on I',, wu,is the un-
known displacement vector in Cartesian components,
x, y and z, &, is the connectivity vector between
constrained degree of freedom, [lul],; is the amount
of normal relative displacement representing full
contact.

The conventional finite element methods approximate
the potential energy II, through a kinematically ad-
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missible displacement field, interpolated over the ele-
ment domains from nodal displacement vectors. To
minimize II, for the unknown state of the indetermi-
nate boundary conditions, the functional needs be aug-
mented either by Lagrangian multiplier or a surface
energy term, growing the amount of constraint violation,
M) =T1, @ +%w2i,(g,"ui Y (8, =) S min )

Eq.(7) will be satisfied in a least-square sense by virtue
of the quadratic form of additional term, representing the
work done by ‘push-back’ forces p,(w), where w>>1
regularizes the unilateral constraint problem,

p,(w)=w(g/u,—[lul],) ®)

An algebraic equation system is obtained from first
variation of the potential in Eq.(7), to which the constraint
conditions are added in their ‘perturbed’ form,

K (i u f
G" -1 {p}z{[luno} ®

where K is the system stiffness matrix assembled from the
individual elements, f is the given vector of the external
nodal forces. The contact force p can be considered out
owing to their proportionality to the amount of constraint
violation.

Ku+Gp=f
6GTu- L Gp=Gun, (= [K+wGGT l=f +wGliul), (10)
w

This penalty augmented system matrix is assembled in
the usual direct stiffness procedure and the equation sys-
tem of the same size as without constraints and is solved
in conventional Newton-Rapson technique. Another im-
portant aspect is the selection of penalty parameter w.
Clearly as w— oo, K+ wGG' become linearly de-
pendent. Linear dependence means singularity. Hence
K +wGGT approaches singularity as w — oo, In fact,
if w excced 1/&, =10" the computer will not be able
to distinguish K +wGG' from an exactly singular ma-
trix. If w<<10"but w>>1, the effect will be seen in
increasing solution errors affecting the computed dis-
placements @ returned by equation solver. These error,
however, tends to be more of a random nature than the
constraint violation error. Obviously we have two effects
at odds with each other. Making w larger reduces the
constraint violation error but increase the solution error.
The best w is that which makes both errors roughly equal
in absolute value. This tradeoff value is difficult to find

Cohesive Interface Model on Concrete Materials

aside from running numerical experiments. In the finite-
precision arithmetic there exists thus an optimum choice
of the penalty parameter w between constraint satisfac-

tion and truncation error '®.

3.2 Finite element discretization

Neglecting body forces and inertia forces, the princi-
ple of virtual work equates the internal virtual work
SW ™ and the external virtual work W at the time ¢,

5H=6W‘"'—6W”’=_[v6[lul]rth—L&17pdS=0 an

where Suis the virtual displacement field and pis the
applied interface loads and []is the potential surface en-
ergy. Upon finite element discretization and approximation
of the displacement field u through interpolation functions
with

u =Nu* (12)
and,

[lul]=Bu” (13)
we observe that Eq.(11) transforms into a set of algebraic
equations,

Su” [ B'tav -’ [ N'pdS =0 (14)

which can be written as a residual force equation,
Fup=FO-F(p)=0 (15)

where F(t) is the internal force vector assembled from
the element forces

F(t):ij tdv 16

and F(p) are the consistent nodal loads of the applied dis-
placements or concentrated elemental forces. With the
adoption of a constitutive relation,

t=D[lul] . (17)

the internal force vector takes the form

F(t):J.V BTDBdVll=Kll (18)
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In Eqgs.(17) and (18), the stiffness is introduced in a
rather generic manner. In a subsequent section, Dis a
nonlinear function of strains, i.e. D=D([lul])and the
tangent stiffness or some approximation thereof has to be
used to solve Eq.(18).

3.3 2D Formulation

Consider an m-noded line interfaces as shown in Figs. 11
and 12. Each node has two translational degrees of freedoms,
which leads to an element nodal displacement vector u®

el _ )1 2 3 4 m-1 _m T
u =l u? e | (19)

x, y denotes the Cartesian coordinates in global system. The
continuous displacement field is denoted as

w=l ol 20)

where the superscript u and ! indicates the upper and
lower side of the interface respectively, and t and n de-
note the directions of tangential and normal to the inter-
face line respectively. With an aid of the interpolation
polynomials n, the relation between the continuous dis-
placement field and the nodal displacement vector is
derived as '

u =Nu“ (21)

in which N contains the interpolation polynomials accord-

o
N= ,
0 n (22)

Where n={N19N29.”?Nm/2}

ing to
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For the linear interpolation polynomial, e.g. two dimen-
sional case: when m=4, N, =(1-£)/2, N,=(1+¢&)/2.
while & is the isoparametric coordinate in the inter-
face line. To relate the continuous displacement field to
the relative displacements, a gradient matrix G is intro-

duced.
-1 1 0 O
G=
[0 0 -1 1} @3

when the relative displacement vector [lul] is defined as
[luel]={[luel], [1l],}T, we obtain

[lal]=Gu (24)

Since we consider an element in which the global
coordinate systems in the integration points coincide
with the local coordinate system, no transformations
are necessary. For an arbitrary oriented interface ele-
ment, the product GN has to be transformed to the local
tangential coordinate system of the integration point or
node set by R.

[Tu, 1] e, 1]
=R
{[I u, |]} [lu, 1 25
where R describes the rotation of [lul] by
ox  dy ;
_l ¢ o , ox dy g
Ul a " H%j (5” =
& 9

The relation between nodal displacements and relative
displacements for continuous elements is now derived from
Eqgs. (21),(24) and (26) as

101 _ o — By
B (17 It @7

where relative displacement vs. nodal displacement matrix
B reads
B -n -n 0 O
= (28)
0 0 nn
when the matrix D is used to denote the relation that de-
scribes the constitutive behaviors of the interface ele-

ment
d, 0
5 2]
Traction vs. relative displacement relation becomes
t=D[lul] ' (30)

Journal of the Korea Concrete Institute (Vol.17 No.6, Dec., 2005)



in which t={t,¢ }' represents the traction vector. The
linear element stiffness k can now be obtained using the
standard procedure of minimizing the total amount of po-
tential energy. The amount of internal work done in the
interface element equals

1
SU =2 Lb’[lu ltdA (31)

where dA=hdE and h is the thickness of interfaces
along the out of plane direction in 2D plane stress case.
After invoking Eq. (31) results in

SU = laufj BDBdAu = Su"ku (32)
27 2

The amount of external work is given by
SW =-5u'f (33)

with f the external consistent force vector. After variation of
the total potential energy &(U +W) = 0 with respect to the
nodal displacement vector we obtain

ku=f (34)
where the stiffness k equals
k= B'DBdA (35)
A

For the numerically integrated interface elements, the inte-
gral in Eq.(35) is replaced by an integration over the tan-
gential isoparametric coordinates 2,

k=h j::lBTDBJdé (36)

Figs. 13 and 14 show that simple example of linear and quad-
ratic 2D line interface element and their acting stretching eigen-
modes.

0/ .-\‘
A=1.000 A=1.000 A=1.000 A=1.000

Fig. 13 Stretching eigenmodes in four node line
interface element (Lobatto integration rule)
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A=0.333 A=0333 A=0.333

'\.____. — o o

- R

A=0.333 A=1333 A=1333

Fig. 14 Stretching eigenmodes in six node line
interface element (Lobatto integration rule)
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Contact tractions

A i Ty v [

oo Penalty Stiffhess

Fia. 16 A six node surface interface element

3.4 3 D Formulation

In a similar manner in 2D formulation, Figs. 15 and 16 de-
picts a surface interface element which connects two plane
triangle elements. The coordinate x and the displacement field
u which is continuous, on upper side u and lower side 1 are
linearly interpolated using the shape functions N by

N o o0
N=/0 N 0 (37)
0 0 N
where
N, O ON, 0 0 N, O ©
N=|0 N O O N, O O N, O (38)
0 0 N 0 O N, 0O 0 N,
with
N =1-§-n, N,=¢§, N,=1 (39)

and f is the isoparametric coordinates of the interface ele-
ment. The relative displacement field [lul}=u" — u' be-
tween side u and side 1 is obtained by defining Eq. (24).

The remaining work is to construct the rotational ma-
trix in Eq.(27) with additional shear jump term in 3D. A
local coordinate system is established at a point on the
contact in Fig. 16 by first finding the vector normal to
the contact surface. This is obtained as a cross-product
of two vectors,

1059



ox| |ox

o on

_J )9y
n,= aé X an (40)
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o on

The unit vector in the dircction normal to the surface is

n=—rt 1)

where A is the length of M, and represents the unit
mapped area of the interface plane. The two tangent vectors
are formed by

1
s=<0¢:Xn 42)
0
and
t=sXn 43)

Now we are done for the transformation matrix R and ready
to invoking this product B into general stiffness equation as in
Eqgs. (31) and (32). Figs. 17 and 18 show the selective stretching
modes of linear and quadratic surface interfaces.

3.5 Damage in cohesive surfaces

Now we are attempting to insert the life of interface ele-
ment itself. In order to do that, we discuss the earlier in
section 2 regarding Camacho and Ortiz ? model which well
defined in terms of material softening as well as the mate-

@

Fig. 17 Some stretching eigenmodes in 6 node
surface interface element (Lobatto inte-
gration rule)

“

Fig. 18 Some stretching eigenmodes in 12
node surface interface element
(Lobatto integration rule)
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rial degradation due to progressive damage. Hence we
adopt and alter some of details on the constitutive level
however basic idea is similar since effective traction vs.
jump relationship is a basic assumption.

Traditional isotropic damage relation between the trac-
tion vector and the separation vector of a cohesive surface
reads

t=(I-w)lual] (44)

in which t={z,7,}" and [lul]={[lu, I],[lx, ]}’ contain
the normal and tangential components of the traction and
separation to the cohesive surface, respectively. In contin-
uum damage models, one generally assumes the damage
variable @ to be a function of a history parameter K,
which is the function of some measure of the equivalent
strain, g% Various definitions of the equivalent strain
£°? have been proposed of which we mentioned the defi-

)

nition given by Mazar(1989) and Tijssens®”, in which only

the positive, principle strains are used

er= > (e) 45)

where <0> denotes the Macauley brakets. Motivated by the
relative simplicity of Mazar’s criterion and following
Camacho and Ortizz), we let @ be a function of the equiva-
lent one-dimensional cohesive separation { defined by

§%={{lu, ) +oflu, I 46)

in which the influence of the tangential slip [lul] can be
varied through the normal separation parameter. The rate
equations for the cohesive surface are now obtained as

t=(1-w)D{lul]-@D{lul] 47
in which @ is obtained through

. do| J9
a):___ —_—
dg | dllu,l]

. of .
_ |
[la, 1+ ol 1] [ ] (48)

Substitution of Eq. (48) into (47) results in the rate constitu-

tive equations for the cohesive surfaces

o _m doflur 736 ¢ o[Vt
[n ) (- w)d d¢ di u;l I {tu 1] dg dllun I]d [t 1] |:[|w |]:| (49)
e IS L I SR SRR 0 |

The term d@/ d{ is defined through the 1D scalar relation
o(§)=01-w)d,§ (50)

in which o and § are the one-dimensional traction and
separation of the cohesive surface. Hence

Journal of the Korea Concrete Institute (Vol.17 No.6, Dec., 2005)



do 1 [c(g) _ dO'(C)} -

a4l ¢ de

Here we limit ourselves to damage initiation and growth
under tensile stresses. Initially the cohesive surface consti-
tutive response is assumed to be elastic according to
0(§)=d,{ where we take d =0, /[lul], with o
the maximum tensile strength of the cohesive surface and

max

[lul], the value of the equivalent cohesive separation { for
which damage initiates. For separation { >[lul], we as-
sume softening of the cohesive response. Common ap-
proaches to define softening after peak load are linear or
exponential softening laws. These will be adopted here ac-
cording to

)
o )=Gmeﬂ[ ”"”1], ¢ 2[lul], &3)

For exponential softening, the rate of softening is determined
by the separation parameter [lul],. The localization of deforma-
tion and thus the prediction of the final fracture path is to a large
extent determined by the initial softening slope of the cohesive
law. For this reason, the value of ﬂ in the exponential soften-
ingis taken as [lu 1], /([lu1], ~[1u1],) which results in equal
initial softening behavior for linear and exponential softening.
The softening response is illustrated in Fig. 19.

Figs. 20, 21 show the relationship of the normal traction
and corresponding relative displacement in tension in terms
of Gj{“. In order to avoid to interpenetration in compres-
sion, only tangential slip term is active in progressive dam-
age. The role of the coupling factor o for shear contribu-
tion of mixed mode damage is shown in Figs. 20, 21. Nor-
mally, o range is from 0 to 1. The factor ¢ =0 means the
material law only involves tensile action which is fully
decoupled from the shear contribution and vice versa.
When o is equal to 1, a full interaction between normal
and tangential damage is considered.

Expanding to 3D effective damage model is pretty

35 — . —

25—

eff

Gy;=0.01 N/mm -

Effective Traction, t

Residual 1%

S B LT Ce T : ; -
) 3, 0.005 0.01 0015 0.02 0025 5, 003
Effective Jump, 8™

Fig. 19 One-dimensional material softening law
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direction may be taken into account for evaluating effective
traction/jump condition(Eq.54).

&% =(lu, 1) +a([lu, 1+, 1) (54)

In order to implement 2D and 3D interface elements and
their material nonlinearity to finite element method, a so-
phisticate finite element simulation platform FEM-C++>"
will be used for the main analyses. Full Newton-Rapson
iterative methods are being used for the nonlinear analysis.

4. Benchmark tests for plain concretes

4.1 L-Shaped panel in 2D

The L-shaped plain concrete panel has become a popular
benchmark test by B. Winkler, G. Niederwanger and Hof-
stetter” for the validation of computational models for nu-
merical simulation of cracking of plain concrete. Hence, in
order to provide experimental data, test on L-shaped structural
members were performed. Test set-up with the geometric
properties and the boundary conditions is shown in Fig. 22.

and

~
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Normalized Tangential Slip, 3,/ 3
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T
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L ! L | L 1 L L
-1 -0.5 0 05 1
Normalized Normal Opening, §, / 8

Fig. 20 Interaction between normal and tangential
jumpin 2D

Normalized Tangential Traction, 4 ft

! ! I L
2 . L L

-2 -1 1 . 2
Normalized Normal Traction, t, /t

Fig. 21 Interaction between normal and
tangential traction in 2D
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250mm, respectively and its thickness is 100mm. The lower
horizontal edge of the vertical edge was fixed. A vertical line
load, acting uniformly across the thickness opposite to the di-
rection of gravity, was applied on the lower horizontal surface
of the horizontal leg at a distance of 30mm from the vertical
end face. Shortly before reaching the maximum load the ex-
periment was switched from load-control to displacement con-
trol. The composition of the concrete is given in Table 1. The
average values of the uniaxial material parameters for concrete
and the standard deviations were determined on the basis of
three samples for each test series summarized in Table 2. In
addition to the axial tensile strength, the flexural tensile
strength and the splitting tensile strength were specified. Pois-
son’s ratio was stated tobe v =0.18 .

The specific fracture energy G]Ir was determined by
means of direct tensile tests. These tests resulted in a rela-
tively large scatter of the specific fracture energy, ranging
from 0.065 to 0.09 N/mm. Three tests on identical L-Panels
were carried out. The displacements were measured at four
different points by inductive pick-ups, denoted as WTK Nr.
1 to 4 in Fig. 23. The relationship between the load and the
vertical displacément at the point of load application is
shown in Fig. 23 as obtained from tests on three identical
panels. In addition, the relationship between the load and
the horizontal displacement of the corner formed by the
long edges of the panel(measured by the inductive pick-up
WTK Nr. 2) is shown in this figure.

Figs. 24 to 26 are shown in that the influence of the shear in-
teraction ratio ¢ is a critical factor for the secondary crack
path. Initially a diagonal tension crack is developed due to the
rotation of the upper panel part. This is a purely Mode I failure.
All four different ¢ cases show identical diagonal tension

Table 1 Composition of the concrete

Composition Specific gravity(kg/m®)
Sand, 0-2 mm 1,316
Sand, 2-4 mm 470
Sand, 4-8 mm 94
Portland cement 340
Water 180

Table 2 Uniaxial material parameters for concrete

parameters Mean vague Standard

(N/mm®) deviation
Cylindrical compressive strength 31.00 2.65
Axial tensile strength 2.70 ‘ 0.19
Flexural tensile strength 6.39 0.52
Splitting tensile strength 2.66 0.05

Tangent modulus of elasticity 25850.00 1381.00
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crack. After propagating further, the corner zone exhibits com-
plex stress states which determine the secondary crack
path(bifurcation point). When o =0, 1/3 and 2/3 the results
show two different crack branches due to another tensile stress
state. These numerical results are poor match with the experi-
mental result also experiencing numerical difficulties after the
bifurcation point. However, when ¢ =1, the secondary crack
path becomes unique and tends to propagate the diagonal
cracks towards the opposite horizontal face. This is in good
agreement with the actual crack pattern.

4.2 Uniaxial compression test in 3D

Normally, mode I test in most of cases provide relatively
good results because of their simple opening mechanism
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.
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280
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Fig. 22 Layout of L-shaped panel: test set-up
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Fig. 23 Cracks at the front surface(left) and back
face(right) before failure obtained from three
tests on identical L-shaped panels
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Fig. 24 2D FE unstructured mesh for L-shaped
panel: 17343 nodes, 5781 for TRI2D, 8566
for INT2D

@ a=0.0 b) a=1/3

Fig. 25 Crack patterns obtained from FE analy
sis with 2D fournode line interface
element

besides of some subtle issues®”. The failure mode of compres-
sion tests are more complex than the Mode I experiment. Now
we are attempting to analyze the uniaxial compression test of
standard concrete cylinder which is 150mm by 300mm. Since
the effective damage assumption of the constitutive laws allow
for slipping damage under compres-sion. It may not be close
enough to realistic material behavior. Similarly to the above 2D
case study, the shear interaction factor ¢ is assumed to be equal
and set to 0.8 for this uniaxial compression test.

A general description of the problem and the basic mesh lay-
out are shown in Fig. 27. A total of 16,336 nodes (49,008 dofs)
are being used to connect 11,920 elements (TETRA:4,084,
INT3D:7,835). The material properties are E=20,000MPa,
v =02, f =3.0MPa andG}’“ =1.2 N/mm. The loading sur-
faces are only constrained axially so that the specimen is under
uniaxially compression. The experiment of this cylinder test was
performed by Roh and Xi(2000) with normal weighted concrete
specimen. Fig. 27(b) shows the diagonal failure surface with an
angle approximately 56°. Also Fig. 28 shows that the finite cle-
ment analysis result shows failure earlier rather than the experi-
mental one. The force-displacement plot gives an encouraging
result but still a remaining question is the determination of shear
interaction factor ¢ . First, this cylindrical test specimen is axi-
ally symmetric so that one would easily choose « to behave

Cohesive Interface Model on Concrete Materials

— Experiment [Winkler et. al.]

- FE Analysis [Discrete)

z
)
v a4k -
4
2

Horizontal displacement a1 the comer formed by the long edges [mm]

0 ) 1 . 1 R L I
o 0.2 0.4 0.6 08 1
Displucements at the point of LVDTs [mm]

Fig. 26 Load-displacement diagram from three
tests on identical L-shaped panels:
(a) vertical displacement at the point of
load application, (b) horizontal
displacement at the corner formed by
the long edges

(a) (b)
Fig. 27 Cylinder test: (a) geometry and basic mesh
layout, (b) deformed mesh layout with 2D surface
interfaces

isotropic sense. However, the determination of this factor is in
fact depending upon the problem characteristics. This would be
a main shortcoming of this material modeling assumption al-
though it has interaction between normal and tangential compo-
nents Thereby, adjacent continuum elements are not damaged in
this approach. Using this technique, the behavior of the material
is split into two parts, the damage-free continuum with elastic
material behavior that can vary across the body, and the inter-
spersed cohesive interface zones between continuum elements,
which represent localized damage of material. In discrete crack
model, ‘potential’ cracks are spread over the FE mesh domain
with zero-thickness interface elements that initially nearly en-
force continuity of tractions and displacements across the ele-
ments boundaries. They are subjected to a mixed mode failure
criterion. Once the failure criterion is satisfied, ‘potential’ crack
candidates can open or slide following the governing softening
law. Two and three dimensional material model in line or surface
interfaces are discussed and corresponding two benchmark tests
are analyzed and discussed with experimental evidences. Al-
though the material model introduced here is not completely
satisfied with generalized problem with different geometries and
boundary layer effect, this paper provides the practical crack
analysis approach in the sense of strong discontinuity of materi-
als and structures.
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