• Title/Summary/Keyword: Dam process

Search Result 292, Processing Time 0.036 seconds

A Study on the Gradual Brench of Earth Dam (흙댐의 점진적 파괴에 관한 연구)

  • 오남선;선우중호
    • Water for future
    • /
    • v.22 no.2
    • /
    • pp.213-221
    • /
    • 1989
  • Gradual failure of an earth dam is caused by piping or overtopping. In this gradual failure, a breach will form and grow gradually under the erosive action of the waters. The process involved during an earth dam failure is very dynamic and complicated. The physical model of Fread and mathmatical model of Singh and Scarlatos are verified and compared in this study. Fread's model(BREACH) simulates dam failure well when sufficient data are given, and Singh and Scarlatos' model simulates it appoximately with a few simple data.

  • PDF

FINITE ELEMENT MODELING FOR HYDRODYNAMIC AND SEDIMENT TRANSPORT ANALYSIS (II) : SEDIMENT TRANSPORT STUDY

  • Noh, Joon-Woon
    • Water Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.99-109
    • /
    • 2003
  • Since bed elevation changes are mainly dependent on the flow velocity and corresponding shear stress, it is possible to predict bed elevation numerically using velocity components. For the scour analysis due to channel contraction, a bed load transport model is developed and applied to estimate scour depth around coffer dam in the Mississippi River. During Phase I of the Lock & Dam No. 26 replacement project, a coffer dam was constructed to reduce the flow area approximately by 50%. Flow velocity increases due to the flow area reduction yields significant lowering (erosion) of the channel bed elevation. The proposed numerical model solves the sediment continuity equation using the finite element method to evaluate scour process in the vicinity of the coffer dam

  • PDF

Site Suitability Analysis for Underground Dam Using Analytic Hierarchy Process (계층분석과정을 이용한 지하댐 적지분석)

  • 이상일;김병찬
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.36-44
    • /
    • 2003
  • The lack of water resources is becoming a serious issue throughout the world. The water shortage in Korea is expected to increase dramatically through 2020. The amount of water shortage could amount to 1.8 and 2.6 billion cubic meters in 2011 and 2020, respectively. Groundwater can be a solution to this matter in some places. Especially, underground dams are known to be advantageous over conventional dams, evert if they have some drawbacks such as their limited location for development and small sizes. The analytic hierarchy process(AHP) is an analytical tool, supported by simple mathematics, which enables one to explicitly rank tangible and intangible factors against each other for the purpose of resolving conflicts or setting priorities. In order to check the applicability of AHP to the evaluation of underground dam sites, lour candidate locations were chosen. They have suffered from problems like water-supply shortage and delayed dam construction. The analysis results are compared with those of the previous study using a conventional method. It is believed that the developed method can provide central or local government with a basis for reasonable decision-making regarding underground dam development.

Guidelines by World Commission on Dams as seen from Japanese Dam Projects in the Past

  • Nakayama, Mikiyasu;Fujikura, Ryo;Mori, Katsuhiko
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2003.05a
    • /
    • pp.219-225
    • /
    • 2003
  • The World Commission on Dams (WCD) in November 2000 published "Dams and Development" as its only and final report. The report proposed "internationally acceptable criteria and standards" Despite the (act that the WCD itself did not regard the report as a blue print, many NGO's strongly support the report and the guidelines, and demand that they be adopted in their current form by funding organizations. The WCD recommendations and guidelines were found to have several "generic" problems, and the proposed guidelines appear unable to be applied as they stand. The authors assume that only several of these guidelines are operational and many of these are either too experimental or theoretical to be put into use. Furthermore, some seemingly "ready for operation" guidelines still need to be enhanced to be really operational in the real world. About 2,000 large dams were constructed in Japan after the Second World War. Various principles and mechanisms were then developed to better address the issues related to involuntary resettlement. The knowledge accumulated through large dam construction projects in Japan may be applied to other countries. The aim of this paper is to identify the lessons, out of the experiences gained in Japan through large dam construction projects in the past, which could be applicable for future large dam construction projects in other nations. The socio-economic settings as well as legal frameworks in Japan may differ other nation. Nevertheless, the following aspects of the experiences gained in Japan are found to be both applicable and useful for future large dam construction projects abroad: (a) Integrity of community in the negotiation process, (b) Provision of alternative occupations, (c) Funding mechanism in the post-project period, (d) Measures needed during planning process, and (e) Making resettlers "shareholders". These lessons may prove useful to enhance the WCD guidelines.

  • PDF

Mix design of CSG method (CSG 공법적용을 위한 배합설계기법)

  • Kim, Ki-Young;Jeon, Je-Sung;Cho, Sung-Eun;Lee, Jong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.293-301
    • /
    • 2005
  • The CSG(Cemented Sand and Gravel) method is construction technique using as raw materials earth and gravel generated from a local construction site, mixing them with cement and rolling with vibration rollers. Recently, The use of this method for cofferdam and large dam is gradually increasing in Japan. The purpose of an CSG mix design is to develop project specific properties to meet the structure design requirements. But uniform mix design of CSG method has not yet been established. The experience of practitioners from the geotechnical and concrete disciplines has given rise to two genernal approaches to mix design for CSG. This paper reports the concept of how to set the mix design according to modified Proctor compaction test process and the test results on properties such as compaction, compressive strength and modulus of elasticity that obtained by unconfined compression test.

  • PDF

Optimal design of homogeneous earth dams by particle swarm optimization incorporating support vector machine approach

  • Mirzaei, Zeinab;Akbarpour, Abolfazl;Khatibinia, Mohsen;Siuki, Abbas Khashei
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.709-727
    • /
    • 2015
  • The main aim of this study is to introduce optimal design of homogeneous earth dams with oblique and horizontal drains based on particle swarm optimization (PSO) incorporating weighted least squares support vector machine (WLS-SVM). To achieve this purpose, the upstream and downstream slopes of earth dam, the length of oblique and horizontal drains and angle among the drains are considered as the design variables in the optimization problem of homogeneous earth dams. Furthermore, the seepage through dam body and the weight of dam as objective functions are minimized in the optimization process simultaneously. In the optimization procedure, the stability coefficient of the upstream and downstream slopes and the seepage through dam body as the hydraulic responses of homogeneous earth dam are required. Hence, the hydraulic responses are predicted using WLS-SVM approach. The optimal results of illustrative examples demonstrate the efficiency and computational advantages of PSO with WLS-SVM in the optimal design of homogeneous earth dams with drains.

Flood Runoff Analysis of Multi-purpose Dam Watersheds in the Han River Basin using a Grid-based Rainfall-Runoff Model (격자기반의 강우유출모형을 통한 한강수계 다목적댐의 홍수유출해석)

  • Park, In-Hyeok;Park, Jin-Hyeog;Hur, Young-Teck
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.587-596
    • /
    • 2011
  • The interest in hydrological modeling has increased significantly recently due to the necessity of watershed management, specifically in regards to lumped models, which are being prosperously utilized because of their relatively uncomplicated algorithms which require less simulation time. However, lumped models require empirical coefficients for hydrological analyses, which do not take into consideration the heterogeneity of site-specific characteristics. To overcome such obstacles, a distributed model was offered as an alternative and the number of researches related to watershed management and distributed models has been steadily increasing in the recent years. Thus, in this study, the feasibility of a grid-based rainfall-runoff model was reviewed using the flood runoff process in the Han River basin, including the ChungjuDam, HoengseongDam and SoyangDam watersheds. Hydrological parameters based on GIS/RS were extracted from basic GIS data such as DEM, land cover, soil map and rainfall depth. The accuracy of the runoff analysis for the model application was evaluated using EFF, NRMSE and QER. The calculation results showed that there was a good agreement with the observed data. Besides the ungauged spatial characteristics in the SoyangDam watershed, EFF showed a good result of 0.859.

Large deformation performance of the anti-seepage system connection part in earth core dam built on thick overburden

  • Yu, Xiang;Wang, Gan;Wang, Yuke;Du, Xueming;Qu, Yongqian
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.683-696
    • /
    • 2022
  • Dams are inevitably planned to be built on thick overburden with high permeability and deformability. The connection part between concrete cut-off wall in overburden and earth core in dam body is not only a key part of the anti-seepage system, but also a weak position. Large uneven settlement will be aroused at the concoction part. However, the interaction behavior and the scope of the connection part cannot be determined effectively. In this paper, numerical analysis of a high earth core dam built on thick overburden was carried out with large deformation FE method. The mechanical behavior of the connection part was detail studied. It can be drawn that there is little differences in dam integral deformation for different analysis method, but big differences were found at the connection part. The large deformation analysis method can reasonably describe the process that concrete wall penetrates into soil. The high plasticity clay has stronger ability to adapt to large uneven deformation which can reduce stress level, and stress state of concrete wall is also improved. The scope of high plasticity clay zone in the connection part can be determined according to stress level of soils and penetration depth of concrete wall.

Improvement of Hydrologic Dam Risk Analysis Model Considering Uncertainty of Hydrologic Analysis Process (수문해석과정의 불확실성을 고려한 수문학적 댐 위험도 해석 기법 개선)

  • Na, Bong-Kil;Kim, Jin-Young;Kwon, Hyun-Han;Lim, Jeong-Yeul
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.853-865
    • /
    • 2014
  • Hydrologic dam risk analysis depends on complex hydrologic analyses in that probabilistic relationship need to be established to quantify various uncertainties associated modeling process and inputs. However, the systematic approaches to uncertainty analysis for hydrologic risk analysis have not been addressed yet. In this paper, two major innovations are introduced to address this situation. The first is the use of a Hierarchical Bayesian model based regional frequency analysis to better convey uncertainties associated with the parameters of probability density function to the dam risk analysis. The second is the use of Bayesian model coupled HEC-1 rainfall-runoff model to estimate posterior distributions of the model parameters. A reservoir routing analysis with the existing operation rule was performed to convert the inflow scenarios into water surface level scenarios. Performance functions for dam risk model was finally employed to estimate hydrologic dam risk analysis. An application to the Dam in South Korea illustrates how the proposed approach can lead to potentially reliable estimates of dam safety, and an assessment of their sensitivity to the initial water surface level.

Economic Analysis of Dam Operation Improvement by Dam Downstream River Improvement Works (II)-Economic Benefit and Cost Allocation Analysis (댐하류하천정비사업의 댐 운영개선 효과 경제성 분석 (II) -경제적 편익 및 비용분담률 분석)

  • Yoo, Seung-Hoon;Lee, Gwang-Man;Lee, Eul-Rae
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.9
    • /
    • pp.765-776
    • /
    • 2011
  • Flood discharge capacity in a dam downstream reach has been decreased after dam construction because of the river cross section reduction impacted by farm lands, sand-bars and parking lots, etc. in river flood plains. Those obstacles being in the river inside areas have caused negative influences to the dam operation policy. Therefore, the dam downstream river improvement work associated with the dam operation improvement plan is under construction for removing reduction factors on the dam effective storage, assuring flood safety in the dam downstream river and incrementing dam operation benefits. But the project has issued some problems such as project feasibility, economic evaluation, cost allocation and benefit share, etc. Since a dam enterpriser has not committed such kind of project before, it is necessary to set up an objective analysis process and a quantitative financial valuation. This study examines the measurable economic benefits and the cost allocation of the project for the fairness between benefit owners (central government and water electricity enterprisers). As a result, the total economic benefit from 3 dams (Imha, Daechung and Youngdam Dam) accounts for 14.41 Billion Won/year. The financial valuation of K-water as a project enterpriser is approximately estimated at 40% of the total value and the government is 60%.