• Title/Summary/Keyword: Daily rainfall

Search Result 528, Processing Time 0.031 seconds

Development of Temporal Downscaling under Climate Change using Vine Copula (Vine Copula를 활용한 기후변화 시나리오 시간적 상세화 기법 개발)

  • Yu, Jae-Ung;Kwon, Yoon Jeong;Park, Minwoo;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.161-172
    • /
    • 2024
  • A Copula approach has the advantage of providing structural dependencies for representing multivariate distributions for the hydrometeorological variable marginal distribution involved, however, copulas are inflexible for extending in high dimensions, and satisfy certain assumptions to make the dependency. In addition, since the process of estimating design rainfall under the future climate associated with durations given a return period is mainly analyzed by 24-hour annual maximum rainfalls, the dependency structure contains information only on the daily and sub-daily extreme precipitation. Methods based on bivariate copula do not provide information for other duration's dependencies, which causes the intensity to be reversed. The vine copula has been proposed to process the multivariate analysis as vines consisting of trees with nodes and edges connecting pair-copula construction. In this study, we aimed to downscale under climate change to produce sub-daily extreme precipitation data considering different durations based on vine copula.

Derivation of Flood Frequency Curve with Uncertainty of Rainfall and Rainfall-Runoff Model (강우 및 강우-유출 모형의 불확실성을 고려한 홍수빈도곡선 유도)

  • Kwon, Hyun-Han;Kim, Jang-Gyeong;Park, Sae-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.59-71
    • /
    • 2013
  • The lack of sufficient flood data being kept across Korea has made it difficult to assess reliable estimates of the design flood while relatively sufficient rainfall data are available. In this regard, a rainfall simulation based derivation technique of flood frequency curve has been proposed in some of studies. The main issues in deriving the flood frequency curve is to develop the rainfall simulation model that is able to effectively reproduce extreme rainfall. Also the rainfall-runoff modeling that can convey uncertainties associated with model parameters needs to be developed. This study proposes a systematic approach to fully consider rainfallrunoff related uncertainties by coupling a piecewise Kernel-Pareto based multisite daily rainfall generation model and Bayesian HEC-1 model. The proposed model was applied to generate runoff ensemble at Daechung Dam watershed, and the flood frequency curve was successfully derived. It was confirmed that the proposed model is very promising in estimating design floods given a rigorous comparison with existing approaches.

LSTM Prediction of Streamflow during Peak Rainfall of Piney River (LSTM을 이용한 Piney River유역의 최대강우시 유량예측)

  • Kareem, Kola Yusuff;Seong, Yeonjeong;Jung, Younghun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.17-27
    • /
    • 2021
  • Streamflow prediction is a very vital disaster mitigation approach for effective flood management and water resources planning. Lately, torrential rainfall caused by climate change has been reported to have increased globally, thereby causing enormous infrastructural loss, properties and lives. This study evaluates the contribution of rainfall to streamflow prediction in normal and peak rainfall scenarios, typical of the recent flood at Piney Resort in Vernon, Hickman County, Tennessee, United States. Daily streamflow, water level, and rainfall data for 20 years (2000-2019) from two USGS gage stations (03602500 upstream and 03599500 downstream) of the Piney River watershed were obtained, preprocesssed and fitted with Long short term memory (LSTM) model. Tensorflow and Keras machine learning frameworks were used with Python to predict streamflow values with a sequence size of 14 days, to determine whether the model could have predicted the flooding event in August 21, 2021. Model skill analysis showed that LSTM model with full data (water level, streamflow and rainfall) performed better than the Naive Model except some rainfall models, indicating that only rainfall is insufficient for streamflow prediction. The final LSTM model recorded optimal NSE and RMSE values of 0.68 and 13.84 m3/s and predicted peak flow with the lowest prediction error of 11.6%, indicating that the final model could have predicted the flood on August 24, 2021 given a peak rainfall scenario. Adequate knowledge of rainfall patterns will guide hydrologists and disaster prevention managers in designing efficient early warning systems and policies aimed at mitigating flood risks.

Evaluation of Drought Monitoring Using Satellite Precipitation for Un-gaged Basins (미계측지역의 위성강우 기반 가뭄감시 평가)

  • Jang, Sangmin;Yoon, Sunkwon;Lee, Seongkyu;Lee, Taehwa;Park, Kyungwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.55-63
    • /
    • 2018
  • This study analyzed the applications of near real-time drought monitoring using satellite rainfall for the Korean Peninsula and un-gaged basins. We used AWS data of Yongdam-Dam, Hoengseong-Dam in Korea area, the meteorological station of Nakhon Rachasima, Pak chong for test-bed to evaluate the validation and the opportunity for un-gaged basins. In addition, we calculated EDI (Effective doought index) using the stations and co-located PERSIANN-CDR, TRMM (Tropical Rainfall Measurement Mission) TMPA (The TRMM Multisatellite Precipitation Analysis), GPM IMERG (the integrated Multi-satellitE Retrievals for GPM) rainfall data and compared the EDI-based station data with satellite data for applications of drought monitoring. The results showed that the correlation coefficient and the determination coefficient were 0.830 and 0.914 in Yongdam-dam, and 0.689 and 0.835 in Hoengseng-Dam respectively. Also, the correlation coefficient were 0.830, 0.914 from TRMM TMPA datasets and compasion with 0.660, 0.660 based on PERSIANN-CDR and TRMM data in nakhon and pakchong station. Our results were confirmed possibility of near real-time drought monitoring using EDI with daily satellite rainfall for un-gaged basins.

The Effects of Meteorological factors on Sales of Apparel Products - focused on apparel sales in the department store- (기상 요인이 의류제품 매출에 미치는 영향분석 -백화점의 의류매출을 중심으로-)

  • 장은영;이선재
    • Journal of the Korean Society of Costume
    • /
    • v.52 no.2
    • /
    • pp.139-150
    • /
    • 2002
  • The purpose of this study was to explore the effects of meteorological factors on sales of apparel products. Basic fiat came out daily meteorological data and sales data of apparel products in department store from 1998 to 2000. Four factors(the average temperature, rainfall, wind velocity, sunshine duration) from the nine meteorological factors were selected and were collected with Korea Meteorological Administration. Sales data were collected with business strategy department of H (department store in Seoul. The sales data were divided into six classifications, which are woman's wear, men's wear, children's wear, golf wear, sports wear, and inner wear. The results of this study were as follows: 1) Sales of apparel products were significantly correlated with the average temperature, rainfall, wind velocity, sunshine duration. Among the meteorological factors, temperature turned out to be the most influential in apparel sales and then the amount of rainfall, sunshine duration affected sales according to apparel classifications differently. 2) There were some differences among the apparel classifications in the effect of meteorological factors on the sales of apparel. In the spring. the higher the temperature was, the higher the sales of women's wear and golf wear were, but the lower the sales of children's wear, sports wear and inner wear were. In the summer, The higher the amount of rainfall was, the lower the sales of all the apparel classification were. The higher the temperature was, the higher the sales of sports wear were. In the fall, the lower the temperature was, the higher the sales of all the apparel classification except snorts wear were. In the winter, the meteorological factors had little effect on the sales of women's wear, men's wear and children's wear. The higher the temperature was, the higher the sales of golf wear were. The lower the temperature was, the higher the sales of sports wear were.

Considerations on the Specific Yield Estimation Using the Relationship between Rainfall and Groundwater Level Variations (강우 대비 지하수위 변동량을 이용한 비산출율 추정 기법의 적용성 고찰)

  • Kim, Gyoo-Bum;Choi, Doo-Houng;Jeong, Jae-Hoon
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.61-70
    • /
    • 2010
  • In case of groundwater recharge estimation using water table fluctuation method, specific yield affects the accuracy and confidence level of recharge rate. Nevertheless, there have been few studies on the method for the accurate estimation of specific yield in Korea. Specific yield estimated from the relationship between rainfall and groundwater levels is reasonable compared to the other methods. However, lots of factors such as artificial pumping, evapotranspiration by the plants, and a sudden increase in water levels by a heavy rainfall can affect the pattern of groundwater levels' fluctuation and make an over-estimated or under-estimated specific yield. This study obtained a reasonable specific yield by using a daily or 12 hourly average of rainfall and groundwater levels measured in a dry season.

Enhancement of Land Load Estimation Method in TMDLs for Considering of Climate Change Scenarios (기후변화를 고려하기 위한 오염총량관리제 토지계 오염부하량 산정 방식 개선)

  • Ryu, Jichul;Park, Yoon Sik;Han, Mideok;Ahn, Ki Hong;Kum, Donghyuk;Lim, Kyoung Jae;Park, Bae Kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.212-219
    • /
    • 2014
  • In this study, a land pollutant load calculation method in TMDLs was improved to consider climate change scenarios. In order to evaluate the new method, future change in rainfall patterns was predicted by using SRES A1B climate change scenarios and then post-processing methods such as change factor (CF) and quantile mapping (QM) were applied to correct the bias between the predicted and the observed rainfall patterns. Also, future land pollutant loads were estimated by using both the bias corrected rainfall patterns and the enhanced method. For the results of bias correction, both methods (CF and QM) predicted the temporal trend of the past rainfall patterns and QM method showed future daily average precipitation in the range of 1.1~7.5 mm and CF showed it in the range of 1.3~6.8 mm from 2014 to 2100. Also, in the result of the estimation of future land pollutant loads using the enhanced method (2020, 2040, 2100), TN loads were in the range of 4316.6~6138.6 kg/day and TP loads were in the range of 457.0~716.5 kg/day. However, each result of TN and TP loads in 2020, 2040, 2100 was the same with the original method. The enhanced method in this study will be useful to predict land pollutant loads under the influence of climate change because it can reflect future change in rainfall patterns. Also, it is expected that the results of this study are used as a base data of TMDLs in case of applying for climate change scenarios.

Study on the Methodology for Generating Future Precipitation Data by the Rural Water District Using Grid-Based National Standard Scenario (격자단위 국가 표준 시나리오를 적용한 농촌용수구역단위 자료변환 방법 비교 연구)

  • Kim, Siho;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.3
    • /
    • pp.69-82
    • /
    • 2023
  • Representative meteorological data of the rural water district, which is the spatial unit of the study, was produced using the grid-based national standard RCP scenario rainfall data provided by the Korea Meteorological Administration. The retrospective reproducibility of the climate model scenario data was analyzed, and the change in climate characteristics in the water district unit for the future period was presented. Finally the data characteristics and differences of each meteorological element according to various spatial resolution conversion and post-processing methods were examined. As a main result, overall, the distribution of average precipitation and R95p of the grid data, has reasonable reproducibility compared to the ASOS observation, but the maximum daily rainfall tends to be distributed low nationwide. The number of rainfall days tends to be higher than the station-based observation, and this is because the grid data is generally calculated using the area average concept of representative rainfall data for each grid. In addition, in the case of coastal regions, there is a problem that administrative districts of islands and rural water districts do not match. and In the case of water districts that include mountainous areas, such as Jeju, there was a large difference in the results depending on whether or not high rainfall in the mountainous areas was reflected. The results of this study are expected to be used as foundation for selecting data processing methods when constructing future meteorological data for rural water districts for future agricutural water management plans and climate change vulnerability assessments.

Evaluation of Applicability for Nonpoint Discharge Coefficient using Watershed Model (유역모형을 이용한 비점배출계수 적용성 평가)

  • Lee, Eun Jeong;Kim, Tae Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.339-352
    • /
    • 2012
  • Total maximum daily load have been implemented and indicated that nonpoint discharge coeffients in flow duration curve were 0.50 of Normal flow duration ($Q_{185}$) and 0.15 of low flow duration($Q_{275}$). By using SWAT, nonpoint discharge coefficients are studied with the conditions of the instream flow and the rainfall in two study areas. The nonpoint discharge coefficient average of BOD and TP for normal flows duration in 3 years are 0.32~0.36 and 0.28~0.31. For the low flow duration, the nonpoint discharge coefficient avergae of BOD and TP were 0.10~0.12 and 0.10~0.11. These are lower than the coefficients of total maximum load regulation. There are big differences between one of regulation and one of SWAT for the normal flow duration. With the consideration of rainfall condition, the nonpoint discharge coefficient of flood flow duration are influenced on the amount of rainfalls. However, the nonpoint discharge coefficients of normal flow duration and low flow duration are not effected by the rainfall condition. Since the spatial distribution and geomorphological characteristics could be considered with SWAT, the estimation of nonpoint discharge coefficient in watershed model is better method than the use of the recommended number in the regulation.

Evaluation and Estimation of Sediment Yield under Various Slope Scenarios at Jawoon-ri using WEPP Watershed Model (WEPP Watershed Version을 이용한 홍천군 자운리 농경지의 경사도에 따른 토양유실량 평가)

  • Choi, Jae-Wan;Lee, Jae-Woon;Lee, Yeoul-Jae;Hyun, Geun-Woo;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.693-697
    • /
    • 2009
  • Physically-based WEPP watershed version was applied to a watershed, located at Jawoon-ri, Gangwon with very detailed rainfall data, rather than daily rainfall data. Then it was validated with measured sediment data collected at the sediment settling ponds and through overland flow. The $R^2$ and the EI for runoff comparisons were 0.88 and 0.91, respectively. For sediment comparisons, the $R^2$ and the EI values were 0.95 and 0.91. Since the WEPP provides higher accuracies in predicting runoff and sediment yield from the study watershed, various slope scenarios (2%, 3%, 5.5%, 8%, 10%, 13%, 15%, 18%, 20%, 23%, 25%, 28%, 30%) were made and simulated sediment yield values were analyzed to develop appropriate soil erosion management practices. It was found that soil erosion increase linearly with increase in slope of the field in the watershed. However, the soil erosion increases dramatically with the slope of 20% or higher. Therefore special care should be taken for the agricultural field with higher slope of 20% or higher. As shown in this study, the WEPP watershed version is suitable model to predict soil erosion where torrential rainfall events are causing significant amount of soil loss from the field and it can also be used to develop site-specific best management practices.

  • PDF