• 제목/요약/키워드: Daily forecasting

검색결과 312건 처리시간 0.03초

TAR(Threshold Autoregressive) Model for Short-Term Load Forecasting Using Nonlinearity of Temperature and Load (온도와 부하의 비선형성을 이용한 단기부하예측에서의 TAR(Threshold Autoregressive) 모델)

  • Lee, Gyeong-Hun;Lee, Yun-Ho;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • 제50권9호
    • /
    • pp.309-405
    • /
    • 2001
  • This paper proposes TAR(Threshold Autoregressive) model for short-term load forecasting including temperature variable. In the scatter diagram of daily peak load versus daily high or low temperature, we can find out that the load-temperature relationship has a negative slope in the lower regime and a positive slope in the upper regime due to the heating and cooling load, respectively. TAR model is adequate for analyzing these phenomena since TAR model is a piecewise linear autoregressive model. In this paper, we estimated and forecasted one day-ahead daily peak load by applying TAR model using this load-temperature characteristic in these regimes. The results are compared with those of linear and quadratic regression models.

  • PDF

The Load Forecasting in Summer Considering Day Factor (요일 요인을 고려한 하절기 전력수요 예측)

  • Han, Jung-Hee;Baek, Jong-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제11권8호
    • /
    • pp.2793-2800
    • /
    • 2010
  • In this paper, we propose a quadratic (nonlinear) regression model that forecasts daily demands of electric power in summer. For cost-effective production (and/or procurement) of electric power, forecasting demands of electric power with accuracy is important, especially in summer when temperature is high. In the literature, temperature and daily demands of preceding days are typically employed to construct forecasting models. While, we consider another factor, day of the week, together with temperature and daily demands of preceding days. For validating the proposed model, we demonstrate the forecasting accuracy in terms of MAPE(Mean Absolute Percentage Error) and MPE(Maximum Percentage Error) using field data from KEPCO(Korea Electric Power Corporation) in comparison with two forecasting models in the literature. When compared with the two benchmarks, the proposed forecasting model performs far better providing MAPE and MPE not exceeding 3.08% and 8.99%, respectively, in summer from 2005 to 2009.

The Daily Peak Load Forecasting in Summer with the Sensitivity of Temperature (온도에 대한 민감도를 고려한 하절기 일 최대전력수요 예측)

  • 공성일;백영식;송경빈;박지호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • 제53권6호
    • /
    • pp.358-363
    • /
    • 2004
  • Due to the weather sensitivity of the power load, it is difficult to forecast accurately the peak power load of summer season. We improve the accuracy of the load forecasting considering weather condition. We introduced the sensitivity of temperature and proposed an improved forecasting algorithm. The proposed algorithm shows that the error of the load forecasting is 1.5%.

Daily Electric Load Forecasting Based on RBF Neural Network Models

  • Hwang, Heesoo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권1호
    • /
    • pp.39-49
    • /
    • 2013
  • This paper presents a method of improving the performance of a day-ahead 24-h load curve and peak load forecasting. The next-day load curve is forecasted using radial basis function (RBF) neural network models built using the best design parameters. To improve the forecasting accuracy, the load curve forecasted using the RBF network models is corrected by the weighted sum of both the error of the current prediction and the change in the errors between the current and the previous prediction. The optimal weights (called "gains" in the error correction) are identified by differential evolution. The peak load forecasted by the RBF network models is also corrected by combining the load curve outputs of the RBF models by linear addition with 24 coefficients. The optimal coefficients for reducing both the forecasting mean absolute percent error (MAPE) and the sum of errors are also identified using differential evolution. The proposed models are trained and tested using four years of hourly load data obtained from the Korea Power Exchange. Simulation results reveal satisfactory forecasts: 1.230% MAPE for daily peak load and 1.128% MAPE for daily load curve.

Daily Peak Electric Load Forecasting Using Neural Network and Fuzzy System (신경망과 퍼지시스템을 이용한 일별 최대전력부하 예측)

  • Bang, Young-Keun;Kim, Jae-Hyoun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제67권1호
    • /
    • pp.96-102
    • /
    • 2018
  • For efficient operating strategy of electric power system, forecasting of daily peak electric load is an important but difficult problem. Therefore a daily peak electric load forecasting system using a neural network and fuzzy system is presented in this paper. First, original peak load data is interpolated in order to overcome the shortage of data for effective prediction. Next, the prediction of peak load using these interpolated data as input is performed in parallel by a neural network predictor and a fuzzy predictor. The neural network predictor shows better performance at drastic change of peak load, while the fuzzy predictor yields better prediction results in gradual changes. Finally, the superior one of two predictors is selected by the rules based on rough sets at every prediction time. To verify the effectiveness of the proposed method, the computer simulation is performed on peak load data in 2015 provided by KPX.

Supremacy of Realized Variance MIDAS Regression in Volatility Forecasting of Mutual Funds: Empirical Evidence From Malaysia

  • WAN, Cheong Kin;CHOO, Wei Chong;HO, Jen Sim;ZHANG, Yuruixian
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권7호
    • /
    • pp.1-15
    • /
    • 2022
  • Combining the strength of both Mixed Data Sampling (MIDAS) Regression and realized variance measures, this paper seeks to investigate two objectives: (1) evaluate the post-sample performance of the proposed weekly Realized Variance-MIDAS (RVar-MIDAS) in one-week ahead volatility forecasting against the established Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model and the less explored but robust STES (Smooth Transition Exponential Smoothing) methods. (2) comparing forecast error performance between realized variance and squared residuals measures as a proxy for actual volatility. Data of seven private equity mutual fund indices (generated from 57 individual funds) from two different time periods (with and without financial crisis) are applied to 21 models. Robustness of the post-sample volatility forecasting of all models is validated by the Model Confidence Set (MCS) Procedures and revealed: (1) The weekly RVar-MIDAS model emerged as the best model, outperformed the robust DAILY-STES methods, and the weekly DAILY-GARCH models, particularly during a volatile period. (2) models with realized variance measured in estimation and as a proxy for actual volatility outperformed those using squared residual. This study contributes an empirical approach to one-week ahead volatility forecasting of mutual funds return, which is less explored in past literature on financial volatility forecasting compared to stocks volatility.

Forecasting Daily Demand of Domestic City Gas with Selective Sampling (선별적 샘플링을 이용한 국내 도시가스 일별 수요예측 절차 개발)

  • Lee, Geun-Cheol;Han, Jung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제16권10호
    • /
    • pp.6860-6868
    • /
    • 2015
  • In this study, we consider a problem of forecasting daily city gas demand of Korea. Forecasting daily gas demand is a daily routine for gas provider, and gas demand needs to be forecasted accurately in order to guarantee secure gas supply. In this study, we analyze the time series of city gas demand in several ways. Data analysis shows that primary factors affecting the city gas demand include the demand of previous day, temperature, day of week, and so on. Incorporating these factors, we developed a multiple linear regression model. Also, we devised a sampling procedure that selectively collects the past data considering the characteristics of the city gas demand. Test results on real data exhibit that the MAPE (Mean Absolute Percentage Error) obtained by the proposed method is about 2.22%, which amounts to 7% of the relative improvement ratio when compared with the existing method in the literature.

Students' Actual Use and Satisfaction of Meteorological Information and Demands on Health Forecasting at a University (일 대학 학생들의 기상정보 이용실태와 만족도 및 건강정보 요구도)

  • Oh, Jin-A;Park, Jong-Kil
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • 제15권2호
    • /
    • pp.251-259
    • /
    • 2009
  • Purpose: Climate change affects human health and calls for a health forecasting service. The purpose of this study was to explore the students' actual use and their satisfaction with meteorological information and the demands on health forecasting at a university in South Kyungsang Province. Method: This study used a descriptive design through structured self-report questionnaires including frequency, contents, purpose, perception, satisfaction of meterological information and need and demand of health forecasting. Data were collected from June 1 to 5, 2009 and analyzed using the SPSS 17.0 program. Descriptive statistics, t-test, ANOVA, $\chi^2$ test and Person's correlation coefficient were used to analyze the data. Result: The majority of the students watched the daily weather information to decide about daily work, outdoor activity or habitually. The mean score of need for health forecasting was $3.44{\pm}.81$, and the demand for health forecasting was $2.93{\pm}1.05$. Significant differences were found in the need for health forecasting according to sex, major, and environmental disease. In addition, the higher the satisfaction of health forecasting, the higher the demand for it. Conclusion: I suggest improving the meteorological information system technically and developing a health forecasting service resulting in a healthier and more comfortable life.

Forecasting the Daily Container Volumes Using Data Mining with CART Approach (Datamining 기법을 활용한 단기 항만 물동량 예측)

  • Ha, Jun-Su;Lim, Chae Hwan;Cho, Kwang-Hee;Ha, Hun-Koo
    • Journal of Korea Port Economic Association
    • /
    • 제37권3호
    • /
    • pp.1-17
    • /
    • 2021
  • Forecasting the daily volume of container is important in many aspects of port operation. In this article, we utilized a machine-learning algorithm based on decision tree to predict future container throughput of Busan port. Accurate volume forecasting improves operational efficiency and service levels by reducing costs and shipowner latency. We showed that our method is capable of accurately and reliably predicting container throughput in short-term(days). Forecasting accuracy was improved by more than 22% over time series methods(ARIMA). We also demonstrated that the current method is assumption-free and not prone to human bias. We expect that such method could be useful in a broad range of fields.

Forecasting daily PM10 concentrations in Seoul using various data mining techniques

  • Choi, Ji-Eun;Lee, Hyesun;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • 제25권2호
    • /
    • pp.199-215
    • /
    • 2018
  • Interest in $PM_{10}$ concentrations have increased greatly in Korea due to recent increases in air pollution levels. Therefore, we consider a forecasting model for next day $PM_{10}$ concentration based on the principal elements of air pollution, weather information and Beijing $PM_{2.5}$. If we can forecast the next day $PM_{10}$ concentration level accurately, we believe that this forecasting can be useful for policy makers and public. This paper is intended to help forecast a daily mean $PM_{10}$, a daily max $PM_{10}$ and four stages of $PM_{10}$ provided by the Ministry of Environment using various data mining techniques. We use seven models to forecast the daily $PM_{10}$, which include five regression models (linear regression, Randomforest, gradient boosting, support vector machine, neural network), and two time series models (ARIMA, ARFIMA). As a result, the linear regression model performs the best in the $PM_{10}$ concentration forecast and the linear regression and Randomforest model performs the best in the $PM_{10}$ class forecast. The results also indicate that the $PM_{10}$ in Seoul is influenced by Beijing $PM_{2.5}$ and air pollution from power stations in the west coast.