Park, Sohee;Kim, Seungjoo;Yoon, Hayeon;Choi, Daeseon
Journal of the Korea Institute of Information Security & Cryptology
/
v.32
no.5
/
pp.975-986
/
2022
Deep learning is attracting great attention, showing excellent performance in image processing, but is vulnerable to adversarial attacks that cause the model to misclassify through perturbation on input data. Adversarial examples generated by adversarial attacks are minimally perturbated where it is difficult to identify, so visual features of the images are not generally changed. Unlikely deep learning models, people are not fooled by adversarial examples, because they classify the images based on such visual features of images. This paper proposes adversarial attack detection method using Symbolic Representation, which is a visual and symbolic features such as color, shape of the image. We detect a adversarial examples by comparing the converted Symbolic Representation from the classification results for the input image and Symbolic Representation extracted from the input images. As a result of measuring performance on adversarial examples by various attack method, detection rates differed depending on attack targets and methods, but was up to 99.02% for specific target attack.
Journal of the Korea Institute of Information Security & Cryptology
/
v.32
no.2
/
pp.405-416
/
2022
Current AI technology is improving the quality of life by using machine learning based on data. When using machine learning, transmitting distributed data and collecting it in one place goes through a de-identification process because there is a risk of privacy infringement. De-identification data causes information damage and omission, which degrades the performance of the machine learning process and complicates the preprocessing process. Accordingly, Google announced joint learning in 2016, a method of de-identifying data and learning without the process of collecting data into one server. This paper analyzed the effectiveness by comparing the difference between the learning performance of data that went through the de-identification process of K anonymity and differential privacy reproduction data using actual financial data. As a result of the experiment, the accuracy of original data learning was 79% for k=2, 76% for k=5, 52% for k=7, 50% for 𝜖=1, and 82% for 𝜖=0.1, and 86% for Federated learning.
Journal of the Korea Institute of Information Security & Cryptology
/
v.32
no.5
/
pp.817-826
/
2022
AI technology is being successfully introduced in many fields, and models deployed as a service are deployed with black box environment that does not expose the model's information to protect intellectual property rights and data. In a black box environment, attackers try to steal data or parameters used during training by using model output. This paper proposes a method of inferring the type of model to directly find out the composition of layer of the target model, based on the fact that there is no attack to infer the information about the type of model from the deep learning model. With ResNet, VGGNet, AlexNet, and simple convolutional neural network models trained with MNIST datasets, we show that the types of models can be inferred using the output values in the gray box and black box environments of the each model. In addition, we inferred the type of model with approximately 83% accuracy in the black box environment if we train the big and small relationship feature that proposed in this paper together, the results show that the model type can be infrerred even in situations where only partial information is given to attackers, not raw probability vectors.
Climate change is one part of 17 Sustainable Development Goals (SDGs). According to the Fifth Assessment Report by the Inter- governmental Panel on Climate Change(IPCC) published in 2014, global warming is caused by greenhouse gas (GHG) emissions. The most important GHG is carbon dioxide (CO2), which is released by the burning of fossil fuels and, to a lesser extent, by land use practices, followed by nitrous oxide and methane. IPCC predicts that global temperatures will rise 3.7℃ and sea level will rise 0.63 m by 2099 in the case of no strong restraint. According to the report, we can expect a massive species extinctions, changes in storm and drought cycles, altered ocean circulation, and redistribution of vegetation by global warming. However, climate changes, especially global warming, are the largest potential threat to human health and the source of a number of diseases globally. If climate changes are continued uncontrolled, human health will be adversely affected by the accelerating climate change and the natural disaster induced by climate change. It means we will face more serious conditions of injury, disease, and death related to natural disasters such as flood, drought, heat waves, malnutrition, more allergy, air pollution and climate change related infections related to morbidity and mortality. This review emphasizes on the relationship between global climate changes and human health and provides some suggestions for improvement.
Anthracnose disease caused by Colletotrichum orbiculare, induces severe damage to cucurbits worldwide. Resistance of 112 commercial cultivars of cucurbits to C. orbiculare was evaluated. Seedlings of each cultivar at 2- to 3-leaf stage were inoculated with C. orbiculare KACC 40809 by spraying spore suspension of the fungus at a concentration of $4.0{\times}10^5$ spores/mL. Among the 36 cultivars of cucumber, 'Asiastrike', 'Tongilbaedadagi', 'Daeseon', 'Cheongrokmatjjang', 'Nokyacheongcheong', and 'Asianogak' were moderately resistant and the others were susceptible. All the tested cultivars of melon (33) and watermelon (4) showed highly susceptible response to C. orbiculare. On the other hand, the squash cultivars (17) represented less susceptibility to the fungus than the other cucurbits. Of the squash cultivars, 'Gammirak' and 'Teotbat' were resistant and 12 cultivars were moderately resistant. Among the rootstocks for cucurbits, ten cultivars including 'JjeuyakaEX', 'Nunbusyeo', 'Union', 'RS111', 'Ganggeuntoza', 'Hwangjaetoza', 'NO.8', 'Shintoza', 'Bulpaetoza', and 'Newtype' showed high resistance to the anthracnose pathogen. From the results, the resistant cultivars could be used as sources of resistance to cucurbits anthracnose (C. orbiculare) in the future breeding programs.
KIPS Transactions on Computer and Communication Systems
/
v.6
no.10
/
pp.421-428
/
2017
The need for various approaches to non-face-to-face identification technology for registering and authenticating users online is being required because of the growth of online financial services and the rapid development of financial technology. In general, non-face-to-face approaches can be exposed to a greater number of threats than face-to-face approaches. Therefore, identification policies and technologies to verify users by using various factors and channels are being studied in order to complement the risks and to be more reliable non-face-to-face identification methods. One of these new approaches is to collect and verify a large number of personal information of user. Therefore, we propose a big-data based non-face-to-face Identity Proofing method that verifies identity on online based on various and large amount of information of user. The proposed method also provides an identification information management scheme that collects and verifies only the user information required for the identity verification level required by the service. In addition, we propose an identity information sharing model that can provide the information to other service providers so that user can reuse verified identity information. Finally, we prove by implementing a system that verifies and manages only the identity assurance level required by the service through the enhanced user verification in the non-face-to-face identity proofing process.
Journal of the Korea Institute of Information Security & Cryptology
/
v.27
no.2
/
pp.383-395
/
2017
Brainwave-based user authentication technology has advantages such as changeability, shoulder-surfing resistance, and etc. comparing with conventional biometric authentications, fingerprint recognition for instance which are widely used for smart phone and finance user authentication. Despite these advantages, brainwave-based authentication technology has not been used in practice because of the price for EEG (electroencephalography) collecting devices and inconvenience to use those devices. However, according to the development of simple and convenient EEG collecting devices which are portable and communicative by the recent advances in hardware technology, relevant researches have been actively performed. However, according to the experiment based on EEG samples collected by using a single-channel EEG measurement device which is the most simplified one, the authentication accuracy decreases as the number of channels to measure and collect EEG decreases. Therefore, in this paper, we analyze technical problems that need to be solved for practical use of brainwave-based use authentication and propose an incremental elimination method of collected EEG samples for each user to consist a set of EEG samples which are effective to authentication users.
The purpose of this study was to explore the progression levels of science metamodeling knowledge through using questionnaires for 97 students of the gifted in G science academy. As a result of the Rasch model analysis, it was confirmed that the progression levels of the scientific metamodeling knowledge is suitable for the person reliability of 0.71 and the item reliability of 0.96. The progression levels of students' science metamodeling knowledge were classified into 4 stages. First and second levels were considered model to be objective and the third and fourth stages were perceived as subjective. The first level is to view the model as a visual representation of a phenomenon as it is, and the second level is to think that the model corresponds to objective knowledge or theory and is a tool for explanation. The Third level looks at the model as a scientist's exploration tool and fourth level is to think that the model is provisional one and multiple models can coexist in one phenomenon. The progression levels of science metamodeling knowledge of science high school students derived from this study is expected to be used as a reference when constructing a curriculum for science modeling and modeling for gifted students.
Kim, Sung Ki;Kim, Jung Eun;Park, Se-Hee;Paik, Seoung-Hye
Journal of The Korean Association For Science Education
/
v.39
no.3
/
pp.457-464
/
2019
This study aims to explore meta-modeling knowledge of gifted students through the modeling. To do this, five gifted students were asked to do modeling related to candle burning, and all the processes of modeling were observed and then individual interviews were conducted. As a result of the study, two students were classified as first level and three students were classified as second level. The students of the first level did not have any model generation or model-based prediction activities, and observation was the most meaningful activity. On the other hand, the students of the second level performed all four modeling processes. However, the generation of the model and the prediction using the model were relatively strong. The data they gained from the experiments was perceived as just confirming the absolute model. No student was found in Level 3 or Level 4. The results of this study show that gifted students remain at the progression level of recognizing the model as an objective reality, and in order to cultivate a true scientist, it is necessary to educate the gifted students to recognize the subjectivity of the model.
Kim, Daeseon;Bolaqace, Josefa;Rafai, Eric;Lee, Chulwoo
Journal of Appropriate Technology
/
v.6
no.1
/
pp.37-44
/
2020
Medical waste is any kind of waste that contains infectious material and recommended not to be transferred for infection control. As a means of disposal, incineration has better points than dumping or landfill in the quantity reduction, odorless and nonhazardous. However, open burning and incineration of health care wastes under bad circumstances, can result in the emission of environmental pollutants to air. A burial of biological waste brings pollution of soil and water. Most of sub divisional hospitals in Fiji transfer their medical wastes to divisional hospitals for incineration. In 2011, 62,518 kg of medical waste was incinerated in the three divisional hospitals. However, some medical wastes are considered as general waste and burnt or sent to landfill site, some are buried on site in some sub-divisional hospitals. In this regards, urgent education is necessary for awareness promotion to relevant personnel in medical waste treatment. On site incineration using small scale incinerator is more recommended than transportation of medical wastes treatment in Fiji. Moreover, remotely controllable and fixable small scale of incinerator is more desirable in sub-divisional hospitals. It is recommended that Fiji government to set up a legal framework for medical waste management (MWM), to develop specific guidelines for MWM, to set up a training system for MWM to ensure that all relevant personnel are trained, to develop a monitoring and supervision system for MWM, to clarify the future financing of MWM activities, and to improve the MWM infrastructure.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.