• Title/Summary/Keyword: DVR system

Search Result 144, Processing Time 0.021 seconds

A Syudy On DVR Control for Unbalanced Voltage Compensation (불평형 전압 보상을 위한 DVR 제어에 관한 연구)

  • Jung, Hong-Ju;Chung, Joon-Mo;Song, Jong-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.218-221
    • /
    • 2001
  • This paper presents a new control scheme for a Dynamic Voltage Restorer(DVR) system consisting of series voltage source PWM converters. The control system is designed using differential controllers and digital filters to transfer the faulted ac source voltage to a d-q model and to separate the positive and negative sequence component for individual compensation. The performance of the presented controller and scheme are confirmed through simulation and actual experiment.

  • PDF

Design of Voltage Controller of DVR based on DSP (DSP를 기반으로한 DVR의 전압제어기 구현)

  • Lee won-sun;Kim soo-gon;Lim Byung-Kuk;Jeon hee-Jong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.566-569
    • /
    • 2004
  • The recent growth in the use of impactive and nonlinear loads, electronic devices sensitive to power quality has caused many power quality problems. Recently, in power system, not only the reliability of the power supply but also the DVR(Dynamic Voltage Restorer) are being studied more and more. The DVR is a series compensator which can instantaneously compensate a voltage variation in supply side, and is a more effective than a existing UPS(Uninterruptible Power Supply) which can be only used in limited range of loads such as single load. Hence, in this paper, a study of inverter side L-C filter output Voltage for DVR is discussed.

  • PDF

Dynamic Voltage Restorer Control Using $H_{\infty}$ Algorithm ($H_{\infty}$ 알고리즘을 이용한 Dynamic Voltage Restorer의 제어)

  • Chun, Yeong-Han;Kim, Ji-Won;Jeon, Jin-Hong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.12
    • /
    • pp.561-565
    • /
    • 2001
  • Recent trend of increasing automated factories needs supply of high quality power from the utilities. Among the items of the power quality, voltage sag can be compensated by Dynamic Voltage Restorer(DVR). The key feature of the DVR is high response with less transient period to recover from the voltage sag due to the lightning or line-to-ground faults. In this paper we report that $H_{\infty}$ controller is very promising for the practical application to the controller of DVR. Experimental results shown in this paper was obtained by applying the control algorithm to 20 kVA DVR system. The experimental set consists of IGBT-based three phase inverter and the TMS320C32-60 DSP used for main processor of the control board. To simulate the 50% voltage sag, the SCR-based experimental set was constructed.

  • PDF

Analysis of EDLC Characteristics for Dynamic Voltage Restorer System (DVR 시스템 구성을 위한 EDLC의 특성해석)

  • Shon Jin-Geun;Chu Soon-Nam;Lee Won-Sik;Na Chae-Dong
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.424-427
    • /
    • 2006
  • 본 논문에서는 DVR 시스템 구성을 위한 환경친화적 EDLC(전기이중층콘덴서)의 특성해석에 관한 연구를 수행하였다. 순시적인 전압 새그 발생시 급속 충 방전 및 에너지 밀도를 고려한다면 기존 전해캐패시터 보다는 EDLC의 채용이 적당하다. EDLC를 채용한 DVR시스템에서 EDLC의 등가직렬저항 및 정전용량 등은 DVR 인버터의 부하 용량 결정에 따른 보상시간을 결정하므로 이의 내부 특성을 해석할 수 있어야만 한다. 따라서 본 연구에서는 EDLC의 내부 파라미터 추출기법 및 구동부의 DC/DC 컨버터에 관한 해석을 수행하고 EDLC를 채용한 DVR의 구성에 따른 실험결과를 제시한다.

  • PDF

LC Filter Design for Direct Voltage Restorers Considering Voltage Control Performance and PWM Inverter Size (PWM 인버터의 전압제어특성과 인버터 용량을 고려한 순시전압보상기(DVR)의 출력필터 설계방법)

  • Kim, Hyo-Sung;Kim, Jang-Hwan;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.118-121
    • /
    • 2004
  • The cutoff frequency of a LC output filter for Dynamic Voltage Restorers (DVR) limits the control bandwidth of a DVR system and the attenuation factor against the inverter switching ripples. For a selected cutoff frequency of a LC output filter, infinite number of L-C combinations is possible. Although different L-C combination has different filter characteristics, the filter design on L-C combination has been depended on field experiences without clear analysis. This paper proposes a design criterion and design examples for the L-C filter combination considering the control characteristics and the size of DVRs. An experimental DVR system based on the proposed LC output filter design methodology is built and tested.

  • PDF

Dynamic Voltage Restorer (DVR) for 6.6[kV]/60[Hz] Power Distribution System Using Two Quasi Z-Source AC-AC Converters (두 개의 Quasi Z-소스 AC-AC 컨버터에 의한 6.6[kV]/60[Hz] 배전계통의 동적 전압 보상기(DVR))

  • Oum, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol;Choi, Joon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.199-208
    • /
    • 2012
  • This paper proposes a quasi Z-source DVR(Dynamic Voltage Restorer) system with a series connection of the output terminals, to compensate the voltage variations in the 6.6[kV]/60[Hz] power distribution system. The conventional DVR using one quasi Z-source AC-AC converter has the advantage which it can compensate the voltage variations without the need for the additional energy storage device such as a battery, but it is impossible to compensate for the 50[%] under voltage sags. To solve this problem, a DVR system using two quasi Z-source AC-AC converters with the series connection of the output terminals is proposed. By controlling the duty ratio D in the buck-boost mode, the proposed system can control the compensation voltage. For case verification of the proposed system, PSIM simulation is achieved. As a result, in case that the voltage sags-swells occur 10[%], 20[%], 60[%] in power distribution system, and, in case that the 50[%] under voltage sags-swells continuously occur, all case could compensate by the proposed system. Especially, the compensated voltage THD was examined under the condition of the 10[%]~50[%] voltage sags and the 20[${\Omega}$]~100[${\Omega}$] load changes. The compensated voltage THD was worse for the higher load resistances and more severe voltage sags. Finally, In case of the voltage swells compensation, the compensation factor has approached nearly 1 regardless of the load resistance changes, while the compensation factor of voltage sags was related to the load variations.

The New Voltage Event Detection Method and Control System Design for DVR Applied to 22.9kV Distribution System (22.9kV 배전선로 적용을 위한 DVR의 새로운 외란검출 기법 및 제어시스템 설계)

  • Kim H.J.;Chung Y.H.;Kwon G.H.;Park T.B.;Moon J.I.;Jeon Y.S.
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • This paper proposes the new voltage event detection method using the weight factor of neural network and describes control system design for the DVR(Dynamic Voltage Restorer) consisted of a rectifier and series inverter applied to 22.9kV distribution system. As this method can express the fault level of each phase, we expect the proposed method can make up for disadvantage of synchronous detection method. Also, in this paper, the control system was designed using double deadbeat controller, As it has an inner current control loop and an outer voltage control loop, we can easily limit the current level during the transient intervals by using the current control loop. Simulation and experiment are performed to prove the analysis of the voltage event detection method and double deadbeat controller.

Modeling and Control Design of Dynamic Voltage Restorer in Microgrids Based on a Novel Composite Controller

  • Huang, Yonghong;Xu, Junjun;Sun, Yukun;Huang, Yuxiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1645-1655
    • /
    • 2016
  • A Dynamic Voltage Restorer (DVR) model is proposed to eliminate the short-term voltage disturbances that occur in the grid-connected mode, the switching between grid-connected mode and the stand-alone mode of a Microgrid. The proposed DVR structure is based on a conventional cascaded H-bridge multilevel inverter (MLI) topology; a novel composite control strategy is presented, which could ensure the compensation ability of voltage sag by the DVR. Moreover, the compensation to specified order of harmonic is added to implement effects that zero-steady error compensation to harmonic voltage in specified order of the presented control strategy; utilizing wind turbines-batteries units as DC energy storage components in the Microgrid, the operation cost of the DVR is reduced. When the Microgrid operates under stand-alone mode, the DVR can operate on microsource mode, which could ease the power supply from the main grid (distribution network) and consequently be favorable for energy saving and emission reduction. Simulation results validate the robustness and effective of the proposed DVR system.

High-Performance Control of Three-Phase Four-Wire DVR Systems using Feedback Linearization

  • Jeong, Seon-Yeong;Nguyen, Thanh Hai;Le, Quoc Anh;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.351-361
    • /
    • 2016
  • Power quality is a critical issue in distribution systems, where a dynamic voltage restorer (DVR) is commonly used to mitigate the voltage disturbances for loads. This paper deals with a nonlinear control for the three-phase four-wire (3P-4W) DVR under a grid voltage unbalance and nonlinear loads in the distribution system, where a novel control scheme based on the feedback linearization technique is proposed. Through feedback linearization, a nonlinear model of a DVR with a PWM voltage-source inverter (VSI) and LC filters is linearized. Then, the controller design of the linearized model is performed by applying the linear control theory, where the load voltages are kept constant by controlling the d-q-0 axis components of the DVR output voltages. To keep the load voltage unchanged, an in-phase compensation strategy is employed, where the load voltages are recovered to be the same as the previous voltage without a change in the magnitude. With this strategy, the performance of the DVR becomes faster and more stable even under unbalanced source voltages and nonlinear loads. The validity of the proposed control strategy has been verified by simulation and experimental results.

Grid-Connected Photovoltaic System Applying the Step Variable MPPT Control and DVR (Step 가변형 MPPT 제어기법과 DVR을 적용한 계통연계형 태양광 발전 시스템)

  • Lee, Yong-Sik;Jeong, Sung-Won;Gim, Jae-Hyeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.42-49
    • /
    • 2012
  • Grid-connected photovoltaic generator system requires high performance PCS(Power Conditioning System) according to the standard of 'Distributed Generation Grid-Connected Technology Standards'. This paper presents the MPPT control method which improves output efficiency through fast tracking to the maximum power point of PV and a reduced self-excited vibration. Secondly, in this paper DVR function was applied to PCS to compensate the voltage sag frequently happening for a power system. The proposed PCS control is analyzed and compared to conventional PCS operating characteristic, the various insolation and loads, and voltage sag condition through PSIM tool. It proves the utility.