• Title/Summary/Keyword: DUC

Search Result 775, Processing Time 0.025 seconds

PDC Intelligent control-based theory for structure system dynamics

  • Chen, Tim;Lohnash, Megan;Owens, Emmanuel;Chen, C.Y.J.
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.401-408
    • /
    • 2020
  • This paper deals with the problem of global stabilization for a class of nonlinear control systems. An effective approach is proposed for controlling the system interaction of structures through a combination of parallel distributed compensation (PDC) intelligent controllers and fuzzy observers. An efficient approximate inference algorithm using expectation propagation and a Bayesian additive model is developed which allows us to predict the total number of control systems, thereby contributing to a more adaptive trajectory for the closed-loop system and that of its corresponding model. The closed-loop fuzzy system can be made as close as desired, so that the behavior of the closed-loop system can be rigorously predicted by establishing that of the closed-loop fuzzy system.

Joint Scheduling and Flow Control for Multi-hop Cognitive Radio Network with Spectrum Underlay

  • Quang, Nguyen Tran;Dang, Duc Ngoc Minh;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.297-299
    • /
    • 2012
  • In this paper, we introduce a joint flow control and scheduling algorithm for multi-hop cognitive radio networks with spectrum underlay. Our proposed algorithm maximizes the total utility of secondary users while stabilizing the cognitive radio network and still satisfies the total interference from secondary users to primary network is less than an accepted level. Based on Lyapunov optimization technique, we show that our scheme is arbitrarily close to the optimal.

Numerical simulation of reinforced concrete slabs under missile impact

  • Thai, Duc-Kien;Kim, Seung-Eock
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.455-479
    • /
    • 2015
  • This paper presents a numerical analysis of reinforced concrete slabs under missile impact loading. The specimen used for the numerical simulation was tested by the Technical Research Center of Finland. LS-DYNA, commercial available software, is used to analyze the model. The structural components of the reinforced concrete slab, missile, and their contacts are fully modeled. Included in the analysis is material nonlinearity considering damage and failure. The results of analysis are then verified with other research results. Parametric studies with different longitudinal rebar ratios, shear bar ratios, and concrete strengths are conducted to investigate their influences on the punching behavior of slabs under the impact of a missile. Finally, efficient designs are recommended.

An experimental study of flutter and buffeting control of suspension bridge by mechanically driven flaps

  • Phan, Duc-Huynh;Kobayshi, Hiroshi
    • Wind and Structures
    • /
    • v.14 no.2
    • /
    • pp.153-165
    • /
    • 2011
  • The alternative solution for flutter and buffeting stability of a long suspension bridge will be a passive control using flaps. This method not only enables a lightweight economic stiffening girder without an additional stiffness for aerodynamic stability but also avoid the problems from the malfunctions of control systems and energy supply system of an active control by winglets and flaps. A mechanically control using flaps for increasing flutter speed and decreasing buffeting response of a suspension bridge is experimentally studied through a two dimensional bridge deck model. The result shows that the flutter speed is increased and the buffeting response is decreased through the mechanical drive of the flaps.

Hazard analysis and monitoring for debris flow based on intelligent fuzzy detection

  • Chen, Tim;Kuo, D.;Chen, J.C.Y.
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.59-67
    • /
    • 2020
  • This study aims to develop the fuzzy risk assessment model of the debris flow to verify the accuracy of risk assessment in order to help related organizations reduce losses caused by landslides. In this study, actual cases of landslides that occurred are utilized as the database. The established models help us assess the occurrence of debris flows using computed indicators, and to verify the model errors. In addition, comparisons are made between the models to determine the best one to use in practical applications. The results prove that the risk assessment model systems are quite suitable for debris flow risk assessment. The reproduction consequences of highlight point discovery are shown in highlight guide coordinating toward discover steady and coordinating component focuses and effectively identified utilizing these two systems, by examining the variety in the distinguished highlights and the element coordinating.

Measurements of Atmospheric Gaseous Elemental Mercury over the Yellow Sea during 2007-2008

  • Nguyen, Duc Luong;Kim, Jin-Young;Shim, Shang-Gyoo;Jin, Hyoun-Cher;Zhang, Xiao-Shan
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2009.10a
    • /
    • pp.255-258
    • /
    • 2009
  • This study shows that the $Hg^0$ background concentration over the Yellow Sea was generally higher than those observed over other seas/oceans around the world. $Hg^0$ concentrations measured in the urban stomophere were significantly higher than the background concentration in China. Elevated $Hg^0$ concentrations at Deokjeok Island in Korea were attributed to long-range transport of mercury from high emission areas in China.

  • PDF

A Metadata-enabled Approach for Scalable Video Streaming in Heterogeneous Networks

  • Thang, Truong Cong;Le, Hung T.;Nguyen, Duc V.;Pham, Anh T.
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.153-162
    • /
    • 2015
  • In today's pervasive computing environments, multimedia content should be adapted to meet various conditions of network connections, terminals, and user characteristics. Scalable Video Coding (SVC) is a key solution for video communication over heterogeneous networks, where user terminals have different capabilities. This paper presents a standard-compliant approach that adapts an SVC bitstream to support multiple users. The adaptation problem is formulated as an optimization problem, focusing on the tradeoff between qualities of different spatial layers of an SVC video. Then the adaptation process is represented by standard metadata of MPEG-21, which can be solved by universal processing to enable interoperable and automatic operation. Our approach provides the users with optimal quality, a wide flexibility, and seamless adaptation. To the best of our knowledge, this is the first study that shows the adaptation tradeoff between spatial layers of a conforming SVC bitstream.

GLOBAL ATTRACTORS FOR NONLOCAL PARABOLIC EQUATIONS WITH A NEW CLASS OF NONLINEARITIES

  • Anh, Cung The;Tinh, Le Tran;Toi, Vu Manh
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.531-551
    • /
    • 2018
  • In this paper we consider a class of nonlocal parabolic equations in bounded domains with Dirichlet boundary conditions and a new class of nonlinearities. We first prove the existence and uniqueness of weak solutions by using the compactness method. Then we study the existence and fractal dimension estimates of the global attractor for the continuous semigroup generated by the problem. We also prove the existence of stationary solutions and give a sufficient condition for the uniqueness and global exponential stability of the stationary solution. The main novelty of the obtained results is that no restriction is imposed on the upper growth of the nonlinearities.

A HIGH-RESOLUTION VAN LEER-TYPE SCHEME FOR A MODEL OF FLUID FLOWS IN A NOZZLE WITH VARIABLE CROSS-SECTION

  • Cuong, Dao Huy;Thanh, Mai Duc
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.141-175
    • /
    • 2017
  • We present a high-resolution van Leer-type numerical scheme for the isentropic model of fluid flows in a nozzle with variable cross-section. Basically, the scheme is an improvement of the Godunov-type scheme. The scheme is shown to be well-balanced, as it can capture exactly equilibrium states. Numerical tests are conducted which include comparisons between the van Leer-type scheme and the Godunov-type scheme. It is shown that the van Leer-type scheme achieves a very good accuracy for initial data belong to both supersonic and supersonic regions, and the exact solution eventually possesses a resonant phenomenon.

TWO MEROMORPHIC FUNCTIONS SHARING FOUR PAIRS OF SMALL FUNCTIONS

  • Nguyen, Van An;Si, Duc Quang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1159-1171
    • /
    • 2017
  • The purpose of this paper is twofold. The first is to show that two meromorphic functions f and g must be linked by a quasi-$M{\ddot{o}}bius$ transformation if they share a pair of small functions regardless of multiplicity and share other three pairs of small functions with multiplicities truncated to level 4. We also show a quasi-$M{\ddot{o}}bius$ transformation between two meromorphic functions if they share four pairs of small functions with multiplicities truncated by 4, where all zeros with multiplicities at least k > 865 are omitted. Moreover the explicit $M{\ddot{o}}bius$-transformation between such f and g is given. Our results are improvement of some recent results.