• Title/Summary/Keyword: DSMC method

Search Result 69, Processing Time 0.018 seconds

Simulation of Molecular Flows Inside a Guide Block in the OLED Deposition Process (OLED 박막 증착공정에서 유도로 내부의 분자유동 해석)

  • Sung, Jae-Yong;Lee, Eung-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.45-50
    • /
    • 2008
  • Molecular flows inside a guide block in the OLED(organic luminescent emitting device) deposition process have been simulated using DSMC(direct simulation Monte Carlo) method. Because the organic materials are evaporated under vacuum, molecules flow at a high Knudsen number of the free molecular regime, where the continuum mechanics is not valid. A guide block is designed as a part of the linear cell source to transport the evaporated materials to a deposition chamber, When solving the flows, the inlet boundary condition is proved to affect significantly the whole flow pattern. Thus, it is proposed that the pressure should be specified at the inlet. From the analysis of the density distributions at the nozzle exit of the guide block, it is shown that the longer nozzle can emit molecules more straightly. Finally, a nondimensionalized mass flow profile is obtained by numerical experiments, where various nozzle widths and inlet pressures are tested.

Effects of Nozzle Locations on the Rarefied Gas Flows and Al Etch Rate in a Plasma Etcher (플라즈마 식각장치내 노즐의 위치에 따른 희박기체유동 및 알루미늄 식각률의 변화에 관한 연구)

  • 황영규;허중식
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1406-1418
    • /
    • 2002
  • The direct simulation Monte Carlo(DSMC) method is employed to calculate the etch rate on Al wafer. The etchant is assumed to be Cl$_2$. The etching process of an Al wafer in a helicon plasma etcher is examined by simulating molecular collisions of reactant and product. The flow field inside a plasma etch reactor is also simulated by the DSMC method fur a chlorine feed gas flow. The surface reaction on the Al wafer is simply modelled by one-step reaction: 3C1$_2$+2Allongrightarrow1 2AIC1$_3$. The gas flow inside the reactor is compared for six different nozzle locations. It is found that the flow field inside the reactor is affected by the nozzle locations. The Cl$_2$ number density on the wafer decreases as the nozzle location moves toward the side of the reactor. Also, the present numerical results show that the nozzle location 1, which is at the top of the reactor chamber, produces a higher etch rate.

Inverse Heat Transfer Analysis Using Monte Carlo Method in Gas-Filled Micro-Domains Enclosed by Parallel Plates (몬테카를로 방법을 이용한 기체로 채워진 평판 사이의 마이크로 역열전달 해석)

  • Kim, Sun-Kyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.657-664
    • /
    • 2011
  • This study proposes an inverse method for estimating the boundary temperature in a gas-filled, onedimensional parallel domain enclosed by parallel plates. The distance between the plates is considered submicron to one mm. In the current method, it is assumed that the conditions of both heat flux and temperature are simultaneously applicable to one boundary, while no conditions are applicable to the other boundary The temperature on one of the boundaries should be inversely determined from the known temperature and heat flux on the other boundary. This study proposes a procedure for estimating the unknown boundary temperature through Monte Carlo simulation. Both the forward and inverse problems employ the Monte Carlo approach. The forward (direct) problem is solved by using the direct simulation Monte Carlo while the inverse solution is obtained by the simulated annealing.

Analysis of rarefied compressible boundary layers in transition regime (천이영역의 희박기체 압축성 경계층 해석)

  • Choe, Seo-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.509-517
    • /
    • 1997
  • Results of flat plate compressible boundary layer calculation, based on discrete formulation of DSMC method, are presented in low Mach number and low Knudsen number range. The free stream is a uniform flow of pure nitrogen at various Mach numbers in low pressures (i.e. rarefied gas). Complete thermal accommodation and diffuse molecular reflections are used as the wall boundary condition, replacing unreal no-slip condition used in continuum calculations. In the discrete formulation of DSMC method, there is no need to use ad hoc assumptions on transport properties like viscosity and thermal conductivity, instead viscosity is calculated from values of other field variables (velocity and shear stress). Also the results are compared with existing self-similar continuum solutions. In all Mach number cases computed, velocity slip is most pronounced in regions near the leading edge where continuum formulation renders the solution singular. As the boundary layer develops further downstream, velocity slips asymptote to values that are between 10 to 20% of the magnitude of free stream velocity. When the free stream number density is reduced, so the gas more rarefied, the velocity slip increases as expected.

Analysis Study of Liquid Apogee Engine Plume for Geostationary Satellite (정지궤도위성 궤도전이용 액체원지점엔진의 배기가스 해석 연구)

  • Lee, Chi Seong;Lee, Kyun Ho
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.8-15
    • /
    • 2018
  • The geostationary satellite uses a liquid apogee engine, to obtain a required velocity increment to enter a geostationary orbit. However, as the liquid apogee engine operates in the vacuum, a considerable disbursement of exhaust plume flow, from the liquid apogee engine can trigger a backflow. As this backflow may possibly collide with the satellite directly, it can cause adverse effects such as surface contamination, thermal load, and altitude disturbance, that can generate performance reduction of the geostationary satellite. So, this study investigated exhaust plume behavior of 400 N grade liquid apogee engine numerically. To analyze exhaust plume behavior in vacuum condition, the DSMC (Direct Simulation Monte Carlo) method based on Boltzmann equation is used. As a result, thermal fluid characteristics of exhaust plume such as temperature and number density, are observed.

Influence of the Mars atmosphere model on aerodynamics of an entry capsule

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.3
    • /
    • pp.239-256
    • /
    • 2019
  • This study develops a dual purpose: i) evaluating the effects of two different Mars atmosphere models (NASA Glenn and GRAM-2001) on aerodynamics of a capsule (Pathfinder) entering the Mars atmosphere, ii) verifying the feasibility of evaluating the ambient density and pressure by means of the methods by McLaughlin and Cassanto, respectively and therefore to re-build the values provided by the models. The method by McLaughlin relies on the evaluation of the capsule drag coefficient, the method by Cassanto relies on the measurement of pressure at a point on the capsule surface in aerodynamic shadow. The study has been carried out computationally by means of: i) a code integrating the equations of dynamics of the capsule for the computation of the entry trajectory, ii) a DSMC code for the solution of the flow field around the capsule in the altitude interval 50-100 km. The models show consistent differences at altitudes higher than about 40 km. It seems that the GRAM-2001 model is more reliable than the NASA Glenn model. In fact, the NASA Glenn model produces, at high altitude, temperatures that seem to be too low compared with those from the GRAM-2001 model and correspondingly very different aerodynamic conditions in terms of Mach, Reynolds and Knudsen numbers. This produces pretty different capsule drag coefficients by the two models as well as pressure on its surface, making not feasible neither the method by McLaughlin nor that by Cassanto, until a single, reliable model of the Mars atmosphere is not established. The present study verified that the implementation of the Cassanto method in Mars atmosphere should rely (such as it is currently) on pressure obtained experimentally in ground facilities.

Influence of partial accommodation coefficients on the aerodynamic parameters of an airfoil in hypersonic, rarefied flow

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.4
    • /
    • pp.427-443
    • /
    • 2015
  • The present paper is the follow-on of a former work in which the influence of the gas-surface interaction models was evaluated on the aerodynamic coefficients of an aero-space-plane and on a section of its wing. The models by Maxwell and by Cercignani-Lampis-Lord were compared by means of Direct Simulation Monte Carlo (DSMC) codes. In that paper the diffusive, fully accommodated, semi-specular and specular accommodation coefficients were considered. The results pointed out that the influence of the interaction models, considering the above mentioned accommodation coefficients, is pretty strong while the Cercignani-Lampis-Lord and the Maxwell models are practically equivalent. In the present paper, the comparison of the same models is carried out considering the dependence of the accommodation coefficients on the angle of incidence (or partial accommodation coefficients). More specifically, the normal and the tangential momentum partial accommodation coefficients, obtained experimentally by Knetchel and Pitts, have been implemented. Computer tests on a NACA-0012 airfoil have been carried out by the DSMC code DS2V-64 bits. The airfoil, of 2 m chord, has been tested both in clean and flapped configurations. The simulated conditions were those at an altitude of 100 km where the airfoil is in transitional regime. The results confirmed that the two interaction models are practically equivalent and verified that the use of the Knetchel and Pitts coefficients involves results very close to those computed considering a diffusive, fully accommodated interaction both in clean and flapped configurations.

Aerodynamics of a wing section along an entry path in Mars atmosphere

  • Zuppardi, Gennaro;Mongelluzzo, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.53-67
    • /
    • 2021
  • The increasing interest in the exploration of Mars stimulated the authors to study aerodynamic problems linked to space vehicles. The aim of this paper is to evaluate the aerodynamic effects of a flapped wing in collaborating with parachutes and retro-rockets to reduce velocity and with thrusters to control the spacecraft attitude. 3-D computations on a preliminary configuration of a blunt-cylinder, provided with flapped fins, quantified the beneficial influence of the fins. The present paper is focused on Aerodynamics of a wing section (NACA-0010) provided with a trailing edge flap. The influence of the flap deflection was evaluated by the increments of aerodynamic force and leading edge pitching moment coefficients with respect to the coefficients in clean configuration. The study was carried out by means of two Direct Simulation Monte Carlo (DSMC) codes (DS2V/3V solving 2-D/3-D flow fields, respectively). A DSMC code is indispensable to simulate complex flow fields on a wing generated by Shock Wave-Shock Wave Interaction (SWSWI) due to the flap deflection. The flap angle has to be a compromise between the aerodynamic effectiveness and the increases of aerodynamic load and heat flux on the wing section lower surface.

Development of a Parallel Cell-Based DSMC Method Using Unstructured Meshes (비정렬격자에서 병렬화된 격자중심 직접모사 기법 개발)

  • Kim, Hyeong-Sun;Kim, Min-Gyu;Gwon, O-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.1-11
    • /
    • 2002
  • In the present study, a parallel DSCM technique based on a cell-based data structure is developed for the efficient simulation of rarefied gas flows especially od PC clusters. Dynamic load balancing is archieved by decomposing the computational domain into several sub-domains and accounting for the number of particles and the number cells of each domain. Mesh adaptation algorithm is also applied to improve the resolution of the solution and to reduce the grid dependency. It was demonstrated that accurate solutions can be obtained after several levels of mesh adapation starting from a coars initial grid. The method was applied to a two-dimensioanal supersonic leading-edge flow and the axi-symmetric Rothe nozzle flow to validate the efficiency of the present method. It was found that the present method is a very effective tool for the efficient simulation of rarefied gas flow on PC-based parallel machines.

Numerical Analysis of Rarefied Hypersonic Flows Using Generalized Hydrodynamic Models for Diatomic Gases (이원자 기체 일반유체역학 모델을 이용한 극초음속 희박 유동장 해석)

  • Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.32-40
    • /
    • 2002
  • The study of nonlinear gas transport in rarefied condition or associated with the microscale length of the geometry has emerged as an interesting topic in recent years. Along with the DSMC method, several fluid dynamic models that come under the general category of the moment method or the Chapman-Enskog method have been used for this type of problem. In the present study, on the basis of Eu's generalized hydrodynamics, computational models for diatomic gases are developed. The rotational nonequilibrium effect is included by introducing excess normal stress associated with the bulk viscosity of the gas. The new models are applied to study the one-dimensional shock structure and the multi-dimensional rarefied hypersonic flow about a blunt body. The results indicate that the bulk viscosity plays a considerable role in fundamental flow problems such as the shock structure and shear flow. An excellent agreement with experiment is observed for the inverse shock density thickness.