DOI QR코드

DOI QR Code

Analysis Study of Liquid Apogee Engine Plume for Geostationary Satellite

정지궤도위성 궤도전이용 액체원지점엔진의 배기가스 해석 연구

  • Lee, Chi Seong (Department of Aerospace Engineering, Sejong University) ;
  • Lee, Kyun Ho (Department of Aerospace Engineering, Sejong University)
  • 이치성 (세종대학교 항공우주공학과) ;
  • 이균호 (세종대학교 항공우주공학과)
  • Received : 2018.04.04
  • Accepted : 2018.06.19
  • Published : 2018.10.31

Abstract

The geostationary satellite uses a liquid apogee engine, to obtain a required velocity increment to enter a geostationary orbit. However, as the liquid apogee engine operates in the vacuum, a considerable disbursement of exhaust plume flow, from the liquid apogee engine can trigger a backflow. As this backflow may possibly collide with the satellite directly, it can cause adverse effects such as surface contamination, thermal load, and altitude disturbance, that can generate performance reduction of the geostationary satellite. So, this study investigated exhaust plume behavior of 400 N grade liquid apogee engine numerically. To analyze exhaust plume behavior in vacuum condition, the DSMC (Direct Simulation Monte Carlo) method based on Boltzmann equation is used. As a result, thermal fluid characteristics of exhaust plume such as temperature and number density, are observed.

발사체로부터 분리된 정지궤도위성은 천이궤도로 진입한 후에 액체원지점엔진을 사용하여 충분한 속도증분을 얻음으로써 정지궤도로 진입하게 된다. 이때 우주공간으로 배출되는 액체원지점엔진의 배기가스 중 일부는 고진공 환경에서 팽창하는 동안 위성체 방향으로 역류하는 후방유동으로 발달하게 된다. 이러한 후방유동은 위성체에 충돌하면서 자세제어 교란, 표면 오염, 열전달 등의 영향을 끼치게 되므로 정지궤도위성 임무성능의 저하를 유발할 수 있다. 따라서 본 연구에서는 정지궤도위성에 사용되는 400 N급 액체원지점엔진에서 배출되는 배기가스의 거동을 해석하였다. 이를 위해 볼츠만방정식에 기반을 둔 직접모사법(DSMC)을 사용하였다. 해석결과로 액체원지점엔진에서 배출된 배기가스의 온도 및 수밀도와 같은 열유동 특성을 확인할 수 있었다.

Keywords

References

  1. Y. H. Jang and K. H. Lee, "A Development Trend Study of Bipropellant Rocket Engine for Orbit Transfer and Attitude Control of Satellite," Journal of The Korean Society of Propulsion Engineers, vol. 19, no. 1, pp. 50-60, Feb. 2015. https://doi.org/10.6108/KSPE.2015.19.1.050
  2. M. J. Yu, K. H. Lee and J. M. Choi, "Development Trend of Spacecraft Propulsion System," Current Industrial and Technological Trends in Aerospace, vol. 2, no. 2, pp. 70-83, 2004.
  3. Y. H. Jang and K. H. Lee, "A Review on Major Foreign Research Trend of Monomethylhydrazine Reaction for Space Propulsion Part I : Thermal Decomposition Reaction of Monomethylhydrazine," Journal of The Society for Aerospace System Engineering, vol. 10, no. 1, pp. 66-73, March 2016. https://doi.org/10.20910/JASE.2016.10.1.66
  4. Y. H. Jang and K. H. Lee, "A Review on Major Foreign Research Trend of Monomethylhydrazine Reaction for Space Propulsion Part II : Chemical Reaction of Monomethylhydrazine-Dinitrogen Tetroxide," Journal of The Society for Aerospace System Engineering, vol. 10, no. 1, pp. 74-81, March 2016. https://doi.org/10.20910/JASE.2016.10.1.74
  5. H. Kim and K. H. Lee, "Exhaust Plume Behavior Study of MMH-NTO Bipropellant Thruster," Journal of The Korean Society for Aeronautical & Space Sciences, vol. 45, pp. 300-309, April 2017. https://doi.org/10.5139/JKSAS.2017.45.4.300
  6. C. Theroude, G. Scremin and M. Wartelski, "Astium Approach for Plume Flow and Impingement of 10 N Bipropellant Thruster," Proc. of the 7th European Symposium on Aerothermodynamics, 2011.
  7. T. Y. John, S. Fabien and I. Nicola, "Plume Impingement Analysis for the European Service Module Propulsion System," 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014.
  8. G. Jeong, J. H. Lim, J. W. Chae and H. Y. Jeon, "Stress Analysis of the GEO-KOMPSAT-2 Tubing System," Journal of The Society for Aerospace System Engineering, vol. 12, no. 1, pp. 47-56, Feb. 2018.
  9. K. H. Lee and S. N. Lee, "Study on Small Thruster Plume using Preconditioned Continuum Scheme and DSMC Method in Vacuum Area," Journal of The Korean Society for Aeronautical & Space Sciences, vol. 37, pp. 906-915, Sep. 2009.
  10. G. A. Bird, Molecular Gas Dynamics and The Direct Simulation of Gas Flows, Oxford University Press Inc., Oxford, 1994.
  11. D. E. Rothe, "Electron-Beam Studies of Viscous Flow in a Supersonic Nozzle", AIAA Journal, vol. 9, no. 5, pp. 804-811, 1971. https://doi.org/10.2514/3.6279