• Title/Summary/Keyword: DROP-IN

Search Result 6,181, Processing Time 0.038 seconds

THE INFLUENCE OF $CARISOLV^{TM}$ ON SHEAR BOND STRENGTH OF COMPOSITE RESIN RESTORATIONS ($Carisolv^{TM}$의 사용이 복합레진 수복물의 전단결합강도에 미치는 영향)

  • Kim, Dae-Eop
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.47-53
    • /
    • 2003
  • This study evaluated the influence of chemomechanical caries removal agent $Carisolv^{TM}$(MediTeam, Sweden) for composite resin adhesion to sound human permanent and primary dentin. The buccal/labial surfaces of 80 permanent molars and 80 primary incisors were used. Four types of adhesives and one composite resin were used; AQ Bond(Sun Medical, Japan), Clearfil SE Bond(Kuraray, Japan), Single Bond(3M, USA), Scotchbond Multi-Purpose(3M, USA) and Z100(3M, USA). One drop of $Carisolv^{TM}$(MediTeam, Sweden) was pretreated on the dentin for 0 second(control) and 60 seconds. The specimens were thermocycled for 1,000 times in baths kept 5 degrees C and 55 degrees C with a 30 seconds dwell time. Shear bond strengths were tested and the data was statistically analyzed using one-way ANOVA with subsequent post hoc Scheffe test at p<0.05. $Carisolv^{TM}$ treatment significantly decreased the shear bond strength. Shear bond strength of permanent dentin was significantly higher than that of primary dentin. Clearfil SE Bond treatment groups showed the highest shear bond strength and AQ Bond treatment groups showed the lowest shear bond strength.

  • PDF

An Energy Balancing Low Power Routing Method for Sensor Network with Fixed Data Acquisition Nodes (고정식 정보획득 노드로 구성된 센서 네트워크에 적용 가능한 에너지 밸런싱 저전력 라우팅 기법)

  • Jeong Gye-Gab;Kim Hwang-Gi;Lee Nam-Il;Kim Jun-Nyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.6 s.324
    • /
    • pp.59-68
    • /
    • 2004
  • Thanks to the development of microelectromechanical systems(MEMS), wireless communication technology and microsensor technology, it was Possible to manufacture a very small and low costdata acquisition node with sensing function, processing function, wireless communication function and battery. Thus sensor networks begin to be prevailed. The sensor network is a spontaneous system which sets up automatically routing paths and transmits asignificant data to the destination. Sensor nodes requires low-power operation because most of them use a battery as operating power. Sensor nodes transmit a sensing data to the destination. Moreover, they play a router. In fact, because the later consumes more energy than the former, the low-power routing is very important. Sensor networks don't have a routing standard unlike general wireless Ad-hoc networks. So This paper proposes a low-power routing method for anting to sensor networks. It is based on AODV and adapts a method to drop probably RREQ depending on remaining power. We examined it through simulations. From simulation results, we could confirm to reduce power consumption about $10-20\%$ and distribute equally power consumption among nodes.

Effects of Vth adjustment ion implantation on Switching Characteristics of MCT(MOS Controlled Thyristor) (문턱전압 조절 이온주입에 따른 MCT (MOS Controlled Thyristor)의 스위칭 특성 연구)

  • Park, Kun-Sik;Cho, Doohyung;Won, Jong-Il;Kwak, Changsub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.69-76
    • /
    • 2016
  • Current driving capability of MCT (MOS Controlled Thyristor) is determined by turn-off capability of conducting current, that is off-FET performance of MCT. On the other hand, having a good turn-on characteristics, including high peak anode current ($I_{peak}$) and rate of change of current (di/dt), is essential for pulsed power system which is one of major application field of MCTs. To satisfy above two requirements, careful control of on/off-FET performance is required. However, triple diffusion and several oxidation processes change surface doping profile and make it hard to control threshold voltage ($V_{th}$) of on/off-FET. In this paper, we have demonstrated the effect of $V_{th}$ adjustment ion implantation on the performance of MCT. The fabricated MCTs (active area = $0.465mm^2$) show forward voltage drop ($V_F$) of 1.25 V at $100A/cm^2$ and Ipeak of 290 A and di/dt of $5.8kA/{\mu}s$ at $V_A=800V$. While these characteristics are unaltered by $V_{th}$ adjustment ion implantation, the turn-off gate voltage is reduced from -3.5 V to -1.6 V for conducting current of $100A/cm^2$ when the $V_{th}$ adjustment ion implantation is carried out. This demonstrates that the current driving capability is enhanced without degradation of forward conduction and turn-on switching characteristics.

Characteristics of velocity-dependent shear behavior of saw-cut rock joints at different shear velocities (편평한 암석절리면의 속도 의존적 전단거동 특성)

  • Park, Byung-Ki;Lee, Chang-Soo;Jeon, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.121-131
    • /
    • 2007
  • Recently, the probability of rock joints being exposed to free faces is getting higher for the scale of rock mass structures gets larger. Also, the frequency of occurring dynamic events such as earthquakes and blasting has been increasing. Thus, the shear behavior of rock joints under different conditions needs to be investigated. In this study, a series of direct shear tests were carried out under various conditions to examine the velocity-dependent shear behavior of saw-cut rock joints. Two types of direct shear test were carried out. The first was to examine the velocity-dependent shear behavior of saw-cut rock joints at seven different shear velocities, each with three different normal stresses. The second was to examine the shear behavior of saw-cut rock joints when three different instantaneous shear velocities changed. As a result, the coefficient of friction was affected by normal stress. The breakpoint velocity, the point when the change of shear velocity starts to affect the frictional behavior, became lower as normal stress increased. Also, as the shear velocity became lower, the degree of stress-drop on stick-slip behavior became larger. As a result of examining the changes of friction coefficient, velocity weakening (decrease of friction coefficient) was observed. The decrement of friction coefficient due to the changes of shear velocity under slow shear velocity was larger than that under fast shear velocity.

  • PDF

A Study on Two-interconnected Fluidized Beds System for Selective Solid Circulation (선택적 고체순환을 위한 2탑 유동층 시스템 연구)

  • Ryu, Ho-Jung;Jang, Myoung-Su;Kim, Hong-Ki;Lee, Dong-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.337-343
    • /
    • 2009
  • To apply to novel two-interconnected fluidized beds system for selective solid circulation, a solid separator and a solid circulation system were developed. The solid separation rate increased as the gas velocity through the solid injection nozzle, solid height, and diameter of solid injection nozzle increased. However, the effect of the fluidization velocity was negligible. Coarse($212{\sim}300{\mu}m$) and fine($63{\sim}106{\mu}m$) particles were separated using the solid separator and the solid separation rate was ranged from 66 to 453 g/min. The solid circulation rate increased as the gas velocity through the solid injection nozzle, solid height, and the number of solid intake holes increased. However, the effect of the fluidization velocity was negligible. Fine particle was circulated using the solid circulation system and the solid circulation rate was ranged from 65 to 390 g/min. We also proposed two interconnenced fluidized beds system for selective solid circulation equipped with the developed solid separator and the solid circulation system. Long-term operation of continuous solid circulation up to 20 hours has been performed to check feasibility of stable operation. The pressure drop profiles in two beds and the solid separation rate were maintained steadily, and therefore, we could conclude that solid circulation was smooth and stable.

Study on Performance and Analysis of PF Heat Exchanger for Heat Pump Dryer (히트펌프 건조기용 PF 열교환기 성능 및 해석 연구)

  • Kim, Ki-Young;Lee, Seok-Hyun;Kwon, Young-Chul;Chun, Chong-Keun;Park, Sam-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1576-1581
    • /
    • 2013
  • In the present study, the performance of a PF heat exchanger for heat pump dryer was investigated. Capacity and dehumidification amount of the PF heat exchangers(PF1, PF2, PF3) by different inclination angles($0^{\circ}$, $30^{\circ}$, $60^{\circ}$) were studied. Experimental conditions were an air velocity crossing to the heat exchanger(0.5m/s), an air dry-bulb temperature($60^{\circ}C$) and relative humidity(70%). The experimental results have shown that the performance of the inclined PF heat exchangers was better than that of the vertically installed one. PF3 showed better performance compared to PF1 and PF2 due to the large pin pitch which are leading to more draining for dehumidified water. But, capacity and dehumidification amount of the PF heat exchanger at the inclination angles of $60^{\circ}$ was decreased due to pressure drop. Also, to predict the experimental data of the PF heat exchanger, the performance program was developed for the inclination angles of $0^{\circ}$. PF heat exchanger performance between experiment data and calculation data was satisfied within the maximum 2% for capacity and 3% for dehumidification amount.

Wet Surface Air-Side Performance of Fin-and-Tube Heat Exchangers Having Sine Wave Fins and Oval Tubes (사인 웨이브 핀과 타원관으로 구성된 핀-관 열교환기의 공기측 습표면 성능)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2415-2423
    • /
    • 2015
  • Experiments were conducted on sine wave fin-and-tube heat exchangers having oval tubes under wet condition. Oval tubes having an aspect ratio of 0.6 were made, by deforming 12.7mm round tubes. Twelve samples, having different fin pitch and tube row, were tested. Results showed that, for oval tube samples, the effect of fin pitch on j and f factor was not significant. As for the effect of tube row, the lowest j factor was obtained for one row configuration(81% of two row configuration), which is clear contrast to round tube samples, where the highest j factor was obtained for one row configuration. Possible reasoning is provided considering the flow and heat transfer characteristics of sine wave channel combined with connecting oval tubes. Comparison of $j/f^{1/3}$ with plain fin-and-tube heat exchanger having 15.9mm O.D. round tube reveals that present oval fin-and-tube heat exchanger shows superior thermal performance except for one row configuration. In other words, $j/f^{1/3}$ of the two row oval tube heat exchanger was 1.6~2.5 times larger than those of round tube heat exchanger, 1.4~2.4 times larger for three row configuration and 1.2~2.8 times for four row configuration.

Preparation and Characterization of Domestic Alkali-Surfactant-Polymer Solution for Enhanced Oil Recovery (국내산 계면활성제를 이용한 오일회수증진용 알칼리-계면활성제-폴리머용액의 제조 및 특성평가)

  • Lee, Sang Heon;Kim, Sang Kyum;Park, Ji Yun;Lee, Do Kyun;Hwang, Soon Choel;Bae, Wisup;Kim, In Won;Rhee, Young Woo
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.481-486
    • /
    • 2013
  • Alkali-surfactant-polymer (ASP) solution was manufactured by using the domestic surfactants for enhanced oil recovery. Domestic surfactants such as linear alkylbenzene sulfonic acid (LAS) and dioctyl sulfosiuccinate (DOSS) were used. This surfactants were purchased from AK chemtech Co., Ltd. (Korea). LAS and DOSS were blended and the ratio of LAS to DOSS are 1:1 and 2:1. Decane was used as a model compound of the crude oil. Surfactant solution and decane were blended to analyze microemulsion. Brine-oil-surfactant are mixed at varying concentration of brine from 0.8 to 3.6 wt.%. Increasing salinity causes the phase transition of microemulsion from water to middle to oil. Also, by measuring the surface tension and interfacial tension using pendent drop tensiometer and Huh's equation optimal ratio of the ASP solution was determined.

A Study on the Detection of the Rain Using Open-Ended Coaxial Cavity Resonator (한쪽 면이 열린 동축 공동 공진기를 이용한 빗물 감지에 관한 연구)

  • Lee, Yun-Min;Kim, Jin-Kuk;Hur, Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.944-950
    • /
    • 2013
  • This paper is a study of a rain sensor using an open-ended coaxial cavity resonator which senses the amount of rain drops linearly. It shows that it will be used as a sensor to sense the amount of rain dropped on the windshield of an automobile based on the principle of varied resonant frequency and the loss according to the amount and characteristics of an dielectric lied on the open side of a resonator. The input and output ports are built in the both sides of the resonator and the input and output coupling probes are formed like 'ㄱ' shape. The response of rain drops were simulated by the radius of inner conductor of 2 mm, 5 mm, and 10 mm respectively and it showed that the raindrop was sensed most linearly and sensitively when the radius of inner conductor is 5 mm, We have measured that the resonant frequency have varied from 3.55 GHz to 3 GHz and the Q value have varied from 42.38 to 24.3 according to the variation of rain drop amount on the fabricated resonator. Therefore, it shows that the designed resonator can be applied as a rain sensor that measures the amount of rain drops linearly by using the resonant frequency as a measurement parameter.

Design Optimization of Dual-Shell and Tube Heat Exchanger for Exhaust Waste Heat Recovery of Gas Heat Pump (GHP 배열회수용 이중 쉘-튜브형 배기가스 열교환기의 설계 최적화)

  • Lee, Jin Woo;Shin, Kwang Ho;Choi, Song;Chung, Baik Young;Kim, Byung Soon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2015
  • In this paper, we performed the design optimization dual-shell and tube heat exchanger on exhaust waste heat recovery for gas heat pump using CFD and RSM. CFD analysis is useful to design the complex structure such as double shell and tube heat exchanger. By computer simulation, engineers can assess the feasibility of the given design factors and change them to get a better design. But if one wishes to perform complex analysis on the simulation, such dual-shell and tube heat exchanger for GHP, the computational time can become overwhelming. CFD is powerful but it takes a lot of time for complex structure. Therefore, the CFD analysis is minimized by the optimization using the RSM method. As a result, the number of baffle and tube are optimized by 6 baffles and 25 tubes for heat transfer and flow friction. And then pressure drop and heat transfer is improved about 12.2%. We confirm the design optimization using CFD and RSM is useful on complex structure of heat exchanger.