• 제목/요약/키워드: DPF Regeneration

검색결과 62건 처리시간 0.027초

합성가스(Reforming gas)를 이용한 멀티채널 CDPF의 재생 특성 연구 (Studies on Reforming Gas Assisted Regeneration of Multi-channel Catalyzed DPF)

  • 최광춘;정진화;송순호;전광민
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.138-145
    • /
    • 2011
  • Diesel particulate filter (DPF) systems are being used to reduce the particulate matter emission of diesel vehicles. The DPF should be regenerated after certain driving hours or distance to eliminate soot in the filter. The most widely used method is active regeneration with oxygen at $550{\sim}650^{\circ}C$. Syngas (synthetic gas) can be used to lower the regeneration temperature of Catalyzed DPF (CDPF). The syngas is formed by fuel reforming process of CPOx (Catalytic Partial Oxidation) at specific engine condition (1500rpm, 2bar) using 1wt.% $Rh/CeO_2-ZrO_2$ catalyst. The oxidation characteristics of PM with syngas supplied to filter were studied using partial flow system that can control temperature and flow rate independently. The filter is coated with washcoat loading of $25g/ft^3$ $Pt/Al_2O_3-CeO_2$, and multi-channel CDPF (MC-CDPF) was used. The filter regeneration experiments were performed to investigate the effect of syngas exothermic reaction on soot oxidation in the filter. For this purpose, before oxidation experiment, PM was collected about 8g/L to the filter at engine condition of 1500rpm, bmep 8bar and flow temperature of $200^{\circ}C$ Various conditions of temperature and concentration of syngas were used for the tests. Regeneration of filter started at 2% $H_2$ and CO concentration respectively and inlet temperature of $260^{\circ}C$. Filter Regeneration occurs more actively as the syngas concentration becomes higher.

Peugeot 607 경유승용차의 매연여과장치 특성 분석 (A Study on the Characteristics of DPF System of Peugeot 607 Diesel Passenger Car)

  • 김홍석;김진현;신동길;조규백;정용일;김강출;이영재
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.66-74
    • /
    • 2004
  • DPF technology has been considered as one of the most effective methods for reducing diesel particulate emission. PSA Peugeot Citroen introduced the DPF equipped diesel passenger car, Peugeot 607 HDI Sedan, in 2000 for the first time in the world, in which SiC filter, an oxidation catalyst, cerium based fuel born catalyst and post-injection technology were used for PM regeneration. In the present study, the characteristics of the Peugeot 607 DPF system were studied on chassis dynamometer and real road driving conditions. The change of emissions and fuel economy during 80,000km operation were also tested. Additionally, ash contents accumulated in the DPF filter was analyzed and particle size distributions was investigated after running of 80,000km.

전기히터방식 매연여과장치의 PM 산화 특성에 관한 연구 (A Study on the PM Oxidation Characteristics of Electrical Heater DPF System)

  • 함윤영;김대하;김경운
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.183-190
    • /
    • 2006
  • For continuously regenerative PM collecting system which adopted thermally stable SiC DPF and electrical heater which was placed upstream of the filter and driven by well constructed control logic, PM oxidation characteristics were investigated varying air flow rate, amounts of PM accumulated on the DPF and filter inlet temperature in order to get optimized PM regeneration performance. This study showed that the operating condition of air flow rate 70 lpm, high PM loading around 30g and filter inlet temperature $700^{\circ}C$ with heat insulation was effective in achieving high regeneration efficiency. Also, in this condition, we could decrease the electric energy consumption by reducing the regeneration time.

소형디젤기관의 배출가스 저감을 위한 복합재생방식 DPF의 실차적용 연구 (Research on Actual Vehicle Application of Composite Regenerative DPF for Reducing Exhaust Gases of Light-duty Diesel Engines)

  • 이윤철;오상기
    • 한국분무공학회지
    • /
    • 제29권2호
    • /
    • pp.68-74
    • /
    • 2024
  • As awareness of environmental pollution problems increases worldwide, interest in air pollutants is increasing. In particular, NOx and PM, which are major pollutants in diesel vehicles, are contributing significantly to emissions. As a result, its importance is increasing. In this study, based on research results applied to large diesel vehicles, the problem of natural regeneration caused by low exhaust gas temperature during low speed and low load operation is solved by applying a complex regeneration DPF that is not affected by temperature conditions to small diesel vehicles. The feasibility of application to small diesel vehicles was reviewed by measuring the emission reduction efficiency. As a result of the engine test, the power reduction rate and fuel consumption rate before and after device installation under full load conditions were 2.9% decrease and 3.5% increase, respectively, satisfying the standard for a 5% reduction, and as a result of the regeneration equilibrium temperature (BPT) test, the regeneration temperature was 310℃. appeared at the level. The reduction efficiency test results for the actual vehicle durability test equipment showed 97.3% PM, 51.0% CO, and 31.1% HC, while the city commuter vehicle had PM 97.5%, CO 61.7%, HC 40.0%, and the school bus vehicle had PM 96.8%, CO 44.4%, HC 34.3%, and low-speed logistics vehicles showed a reduction efficiency of 98.2% for PM, 36.0% for CO, and 45.7% for HC. Based on the results of this study, in the future, it is necessary to secure DPF technology suitable for all vehicle types through actual vehicle application research on temperature condition-insensitive composite regenerative DPF for medium-sized vehicles.

연속재생 DPF의 재생 성능에 미치는 차량 운행패턴의 영향 (Influence of Driving Pattern on Regeneration Performance of Continuously Regenerating Diesel Particulate Filter)

  • 황진우;이창식
    • 대한기계학회논문집B
    • /
    • 제33권5호
    • /
    • pp.358-364
    • /
    • 2009
  • This paper is to investigate the influence of driving patterns of slow and high speed vehicles on the performance of continuously regenerating diesel particulate filter(DPF) system matched with operating conditions in field application. The DPF performance test for field application was carried out for two identical DPFs installed to slow and high speed vehicles. A slow speed vehicle was selected among local buses which have driving patterns to repeat running and stop frequently, while a high speed vehicle was prepared to have long route of high speed over 60km/h like inter-city buses. In this test, the regeneration performance on the DPF of slow speed vehicle deteriorated because of high soot load index(SLI) in spite of same balance point temperature(BPT) distribution for high speed vehicle. The DPF of slow speed vehicle melted in the end because the rapid increase of back pressure caused high temperature over $1200^{\circ}C$ in the ceramic wall of DPF. The PM components like ash collected to the filter in the DPF were analyzed in order to investigate the cause of the defect and provide an operation performance of DPF system. In the result of the analysis, high levels of lubrication oil ash(Ca, Mg, P, Zn) were detected.

매연여과장치의 재생특성에 관한 연구(1) (A Study on Regeneration Characteristics in DPF(1))

  • 이병호;이상준;최경호
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.72-79
    • /
    • 1998
  • The goals of this research are to understand the regeneration characteristics in diesel particulate filter(DPF) using the cerium additive and throttling. The effects of throttling duration and spring tension of throttling valve were studied. Measurements were made on a 6 cylinder direct injection diesel engine and included pressure drop, filter inlet temperature, oxygen concentrations, and torque. The major conclusions of this work include; (i) the pressure drop is increased with increase of the engine load and the engine speed; (ii) the inlet temperature of the filter is reached $350^{\circ}C$ with certain engine operating condition which leads to sufficient temperature to regenerate with additive; and (iii) oxygen concentrations in the filter and engine torque during throttling operation are decreased by 2 percent and 36 percent, respectively, which are not critical about regeneration and vehicle operation.

  • PDF

총괄 변수 모델을 이용한 DPF 재생 성능에 관한 연구 (A Study on the Regeneration Performance of DPF using Lumped Parameter Model)

  • 전문수
    • 융복합기술연구소 논문집
    • /
    • 제1권1호
    • /
    • pp.41-47
    • /
    • 2011
  • With the world-wide demand on the emission minimization, the needs on the diesel aftertreatment devices with high efficiency are also increasing. In order to effectively develop or design a high-performance diesel particulate filter, a clear understanding on the deposition and regeneration mechanism is required. In the present study, a theory on the lumped parameter model for wall-flow type diesel particulate filters is described focusing on the deposition efficiency, pressure drop inside the filter. The fourth order explicit Runge-Kutta method is utilized for the mass flow rate computation. Engine operation modes with controlled and uncontrolled regeneration options are selected. The computational lumped parameter model is validated by comparing the computed results with the measured data.

  • PDF

배기의 유속분포가 CDPF의 재생 시 비정상적 열적 거동에 미치는 영향 (The Effect of Flow Distribution on Transient Thermal Behaviour of CDPF during Regeneration)

  • 정수진;이점주;최창호
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.10-19
    • /
    • 2009
  • The working of diesel particulate filters(DPF) needs to periodically burn soot that has been accumulated during loading of the DPF. The prediction of the relation between an uniformity of gas velocity and soot regeneration efficiency with simulations helps to make design decisions and to shorten the development process. This work presents a comprehensive combined 'DOC+CDPF' model approach. All relevant behaviors of flow fluid are studied in a 3D model. The obtained flow fields in the front of DPF is used for 1D simulation for the prediction of the thermal behavior and regeneration efficiency of CDPF. Validation of the present simulation are performed for the axial and radial direction temperature profile and shows goods agreement with experimental data. The coupled simulation of 3D and 1D shows their impact on the overall regeneration efficiency. It is found that the flow non-uniformity may cause severe radial temperature gradient, resulting in degrading regeneration efficiency.

HC 분사에 의한 디젤 분진 저감의 제어특성 연구 (A Study on the Control Characteristics for Reduction of Particulate Material by HC Injection)

  • 김병우;허진
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.968-975
    • /
    • 2009
  • The goals of this research are to understand the regeneration characteristics in diesel particulate filter using the HC injection. This research emphasized on the development of Continuously Regenerating DOC/DPF and HC technology which was the best particulate matters removing technology of current existing technology. This experimental study has been conducted with equipped a Continuously Regenerating DOC/DPF and HC injection on displacement 2.0, 3.3 $\ell$ diesel engine and compared in terms of particulate material and emission. In this study, we could constructed 3 kinds of database according to quantity of temperature to decide the HC injection quantity and develop DOC/DPF ECU algorithm.

EffECTIVE PARTICULATES REDUCTION IN DIESEL ENGINES THROUGH THE USE OF FUEL CATALYSED PARTICULATE FILTERS

  • Vincent, M.-W.;Richards, P.-J.;Rogers, T.-J.
    • International Journal of Automotive Technology
    • /
    • 제3권1호
    • /
    • pp.1-8
    • /
    • 2002
  • There is Increasing world-wide interest in diesel particulate filters (DPF) because of their proven effectiveness in reducing exhaust smoke and particulate emissions. Fine particulates have been linked to human health . DPF use requires a means to secure the bum-out of the accumulated soot, a process called regeneration. If this is not achieved, the engine cannot continue to operate. A number of techniques are available, but most are complex, expensive or have a high electrical demand. The use of fuel additives to catalyse soot bum-out potentially solves the problem of securing regeneration reliably and at low cost. Work on organo-metallic fuel additives has shown that certain metals combine to glove exceptional regeneration performance. Best performance was achieved with a combination of iron and strontium based compounds. Tests were carried out un a bed engine and on road vehicles, which demonstrated effective and reliable regeneration from a tow dose fuel additive, using a single passive DPF. No control valves, flow diverters. heaters or other devices were employed to assist regeneration. Independent particle size measurements showed that there were no harmful side effects from the use of the iron-strontium fuel additive.