• Title/Summary/Keyword: DPF

Search Result 212, Processing Time 0.027 seconds

Research on Actual Vehicle Application of Composite Regenerative DPF for Reducing Exhaust Gases of Light-duty Diesel Engines (소형디젤기관의 배출가스 저감을 위한 복합재생방식 DPF의 실차적용 연구)

  • Yun chul Lee;Sang ki Oh
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.68-74
    • /
    • 2024
  • As awareness of environmental pollution problems increases worldwide, interest in air pollutants is increasing. In particular, NOx and PM, which are major pollutants in diesel vehicles, are contributing significantly to emissions. As a result, its importance is increasing. In this study, based on research results applied to large diesel vehicles, the problem of natural regeneration caused by low exhaust gas temperature during low speed and low load operation is solved by applying a complex regeneration DPF that is not affected by temperature conditions to small diesel vehicles. The feasibility of application to small diesel vehicles was reviewed by measuring the emission reduction efficiency. As a result of the engine test, the power reduction rate and fuel consumption rate before and after device installation under full load conditions were 2.9% decrease and 3.5% increase, respectively, satisfying the standard for a 5% reduction, and as a result of the regeneration equilibrium temperature (BPT) test, the regeneration temperature was 310℃. appeared at the level. The reduction efficiency test results for the actual vehicle durability test equipment showed 97.3% PM, 51.0% CO, and 31.1% HC, while the city commuter vehicle had PM 97.5%, CO 61.7%, HC 40.0%, and the school bus vehicle had PM 96.8%, CO 44.4%, HC 34.3%, and low-speed logistics vehicles showed a reduction efficiency of 98.2% for PM, 36.0% for CO, and 45.7% for HC. Based on the results of this study, in the future, it is necessary to secure DPF technology suitable for all vehicle types through actual vehicle application research on temperature condition-insensitive composite regenerative DPF for medium-sized vehicles.

Comparative Studies on Soot Oxidation by Nitrogen Dioxide and Ozone

  • Purushothama, C.;Chen, Xin-Hong;Li, Ming-Wei;Chae, Jae-Ou;Sim, Ju-Hyen
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.117-121
    • /
    • 2006
  • Non-thermal plasma technology has many applications in various areas. One of the applications is regenerating diesel particulate filter (DPF). DPF is a widely applied device to control the particulate emission of diesel engines. But it needs periodic removal of clogged soot for the smooth running of engine. Conventional high-temperature removal processes easily leads to the breakage of DPF. Herein, low-temperature plasma formed in a dielectric barrier discharge (DBD) reactor was used to form active oxidants such as ozone and nitrogen dioxide. Experimentally, the effects of discharge power and frequency on the performance of DBD reactor were studied. Two oxidants, $O_3$ and $NO_2$, were synthesized and used for incinerating soot in the used DPF. Performances of the two oxidants on the reduction of soot were compared, and it was found that $NO_2$ is more effective than $O_3$ for getting rid of soot

  • PDF

Characteristics of erbium-doped fiber sources with double-pass forward configuration for gyroscope application (Double-pass forward 방식으로 구성된 자이로스코프용 Erbium 첨가 광섬유 광원의 특성)

  • 진영준;허영순;김택중;박희갑
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.460-465
    • /
    • 2003
  • Characteristics of 0.98 $\mu$m-pumped erbium-doped fiber (EDF) sources with double-pass forward (DPF) configuration are analyzed by numerical calculation. Various source characteristics such as output power, spectral width and mean-wavelength stability are investigated with the variation of EDF length, pump power and pump wavelength. Some of the numerical results are compared with experimental ones for verification. The results show that the characteristics of sources with DPF configuration can change considerably with the EDF length. It is also found that an optimum design can exist for stable mean-wavelength against fluctuations of pump power and pump wavelength.

An Experimental Study on Active Regeneration Timing for the Minimization of Fuel Penalty in Active Regeneration DPF System Using Diesel Injection (경유분사를 이용한 강제재생방식 DPF 시스템 연비 손실 최소화를 위한 재생시점 고찰)

  • Rah, Seung-Woo;Choung, Youn-Kyoo;Oh, Kwang-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.91-96
    • /
    • 2009
  • The number of vehicles applied diesel engine are rapidly rising for fuel economy. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced emission regulation. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter by car makers but also in retrofit market. In this paper we discussed the optimization of active regeneration timing by comparing the fuel consumption from back pressure caused by PM loading and from active regeneration. The effects of back pressure of DPFs during PM loading, active regeneration condition and engine emission(PM) on additional fuel consumption are experimentally investigated and the proper regeneration timings according to DPF systems and fuel loss for 160,000km are determined.

A Study on the Exhaust Reduction of Diesel Particulates Using Ceramic Fiber Filters (세라믹 섬유필터를 이용한 디젤 입자상물질 배출저감에 관한 기초연구)

  • 주용남;홍민선;문수호;이동섭;임우택
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.3
    • /
    • pp.297-306
    • /
    • 2003
  • Works were focused on back pressure characteristics of ceramic fiber filter on DPF (Diesel Particulate Filter) system and experiments were performed to select appropriate filter which can filter particulates. Filters were installed on metal -support tube which has openings for exhaust gas flow. Ceramic fiber filters with high specific surface area and adequate high temperature strength are commercially available for filtration of diesel particulates and in -situ hot regeneration. Thus, ceramic blanket and ceramic board which are used as insulating media were applied to filter and filtration apparatus was installed on exhaust gas line connected to 2.0 L diesel engine. Alternating filter structure to adapt DPF system, collection efficiency test of diesel particulates was measured. In case of ceramic blanket, pressure drop was low, caused by the destruction of soft structures. Also, particulate collection efficiency was decreased depending on loading time. In case of ceramic board, structure design was altered to reduce back pressure on DPF system. Structure design was altered to induce Z-flow by making 10 mm and 5 mm holes on the surface of media. Alteration of 5 mm hole showed that media have low back pressure but particulate collection efficiency was 77%, while 10 mm hole showed that of 90%.

Unified Modeling and Performance Prediction of Diesel $NO_x$ and PM Reduction by DOC-DPF-SCR System (DOC-DPF-SCR 시스템에 의한 디젤 배기 내 $NO_x$, 입자상 물질 저감 과정의 일관 모델링 및 성능 예측)

  • Jung, Seung-Chai;Yoon, Woong-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.110-119
    • /
    • 2008
  • Computer methods with simplified mathematical models in conjunction with empirical model parameters can be efficiently practiced into an optimization of a diesel aftertreatment system. Components of prime interests are diesel particulate filter, diesel oxidation catalyst and de-$NO_x$ catalytic converter. de-$NO_x$, de-PM, and de-HC processes in each part are individually modeled, formulated and then combined into an integrated analysis procedure for a unified simulation of the diesel emission aftertreatment. The model is empirically tuned and validated with comprehensive engine and laboratory data. The effects of emission species and space velocity on the $NO_x$ and soot reductions are parametrically investigated. A lowered $NO_2/NO_x$ ratio due to PM oxidation in DPF contributes to promote the $NO_x$ reduction by SCR at intermediate gas temperatures. $NO_x$ reduction is inert to the PM oxidation at high temperatures. Rate of PM trapping strongly depends on temperature and $NO_x$ concentration.

Characteristics of Nano-Particles Exhausted from Diesel Passenger Vehicle with DPF

  • Park, Yong-Hee;Shin, Dae-Yewn
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.6
    • /
    • pp.533-538
    • /
    • 2006
  • The nano-particles are known to influence the environmental protection and human health. The relationships between transient vehicle operation and nano-particle emissions are not well-known, especially for diesel passenger vehicles with DPF(Diesel Particulate Filter). In this study, two diesel passenger vehicles were measured on a chassis dynamometer test bench. The particulate matter (PM) emission of these vehicles was investigated by number and mass measurement. The mass of the total PM was evaluated using the standard gravimetric measurement method, and the total number concentrations were measured on a ECE15+EUDC driving cycle using Condensation Particle Counter (CPC). According to the investigation results, total number concentration was $1.14{\times}10^{11}$M and mass concentration was 0.71mg/km. About 99% of total number concentration was emitted during the $0{\sim}400s$ because of engine cold condition. In high temperature and high speed duration, the particulate matter was increased but particle concentration was emitted not yet except initial engine cold condition According to DPF performance deterioration, the particulate matter was emitted 2 times and particle concentration was emitted 32 times. Thus DPF performance deterioration affects particle concentration more than PM.

The effect of dynamic operating conditions on nano-particle emissions from a light-duty diesel engine applicable to prime and auxiliary machines on marine vessels

  • Lee, Hyungmin;Jeong, Yeonhwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.403-411
    • /
    • 2012
  • This study presents the nano-sized particle emission characteristics from a small turbocharged common rail diesel engine applicable to prime and auxiliary machines on marine vessels. The experiments were conducted under dynamic engine operating conditions, such as steady-state, cold start, and transient conditions. The particle number and size distributions were analyzed with a high resolution PM analyzer. The diesel oxidation catalyst (DOC) had an insignificant effect on the reduction in particle number, but particle number emissions were drastically reduced by 3 to 4 orders of magnitude downstream of the diesel particulate filter (DPF) at various steady conditions. Under high speed and load conditions, the particle filtering efficiency was decreased by the partial combustion of trapped particles inside the DPF because of the high exhaust temperature caused by the increased particle number concentration. Retarded fuel injection timing and higher EGR rates led to increased particle number emissions. As the temperature inside the DPF increased from $25^{\circ}C$ to $300^{\circ}C$, the peak particle number level was reduced by 70% compared to cold start conditions. High levels of nucleation mode particle generation were found in the deceleration phases during the transient tests.

A Detailed Examination of Various Porous Media Flow Models for Collection Efficiency and Pressure Drop of Diesel Particulate Filter (DPF의 PM 포집효율 예측을 위한 다양한 다공성 매질 유동장 모델 해석)

  • Jung, Seung-Chai;Yoon, Woong-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.78-88
    • /
    • 2007
  • In the present study a detailed examination of various porous media models for predicting filtration efficiency and pressure drop of diesel particulate filter (DPF), such as sphere-in-cell and constricted tube models, are attempted. In order for demonstrating their validities of correct estimation on permeability, geometry of property configurations common in commercial cordierite DPFs are correlated to the porous media flow models, and validations of predicted filtration efficiencies due to the use of different unit collectors are made with experiments. The result shows that the porosity, pore size and permeability of cordierite DPF can be successfully correlated by Kuwabara flow field with correction factor of 0.6. The unit collector efficiency predicted by sphere-in-cell model agrees very well with measurements in accumulation mode, whereas that by constricted tube model with significant prediction error.

A Study on the Combustion Optimization of a Common Rail Direct Injection Diesel Engine for Regeneration of the Diesel Particulate Filter (매연여과장치 재생을 위한 커먼레일 디젤엔진의 연소 최적화에 관한 연구)

  • Kang Jung Whun;Kim Man Young;Youn Gum Joong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.167-173
    • /
    • 2005
  • Thermal regeneration means burning-off and cleaning-up the particulate matters piled up in DPF(diesel particulate filter), and it requires both high temperature $(550\~600^{\circ}C)$ and appropriate concentration of oxygen at DPF entrance. However, it is not easy to satisfy such conditions because of the low temperature window of the HSDI(high speed direct injection) diesel engine(approximately $200\~350^{\circ}C$ at cycle). Therefore, this study is focused on the method to raise temperature using the trade-off relation between temperature, oxygen concentration, and the influence of many parameters of common rail injection system including post injection. After performing an optimal mapping of the common rail parameters for regeneration mode, the actual cleaning process during regeneration mode is investigated and evaluated the availability of the regeneration mode mapping through regenerating soot trapped in the DPF.