• Title/Summary/Keyword: DP (Dynamic positioning system)

Search Result 43, Processing Time 0.024 seconds

Icevaning control of an Arctic offshore vessel and its experimental validation

  • Kim, Young-Shik;Kim, Jinwhan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.208-222
    • /
    • 2021
  • Managing with the presence of sea ice is the primary challenge in the operation of floating platforms in the Arctic region. It is widely accepted that offshore structures operating in Arctic conditions need station-keeping methods as well as ice management by icebreakers. Dynamic Positioning (DP) is one of the station-keeping methods that can provide mobility and flexibility in marine operations. The presence of sea ice generates complex external forces and moments acting on the vessel, which need to be counteracted by the DP system. In this paper, an icevaning control algorithm is proposed that enables Arctic offshore vessels to perform DP operations. The proposed icevaning control enables each vessel to be oriented toward the direction of the mean environmental force induced by ice drifting so as to improve the operational safety and reduce the overall thruster power consumption by having minimum external disturbances naturally. A mathematical model of an Arctic offshore vessel is summarized for the development of the new icevaning control algorithm. To determine the icevaning action of the Arctic offshore vessel without any measurements and estimation of ice conditions including ice drift, task and null space are defined in the vessel model, and the control law is formulated in the task space. A backstepping technique is utilized to handle the nonlinearity of the Arctic offshore vessel's dynamic model, and the Lyapunov stability theory is applied to guarantee the stability of the proposed icevaning control algorithm. Experiments are conducted in the ice tank of the Korea Research Institute of Ships and Ocean Engineering to demonstrate the feasibility of the proposed approach.

A development of the dynamic positioning(DP) system and model testing for performance estimation on katamaran type unmanned surface vehicle(USV) at open sea (무인쌍동선의 실해역 DP 성능평가를 위한 시스템 및 모형시험 검증 기법 개발)

  • Hyung-Do Song;Seok-Kyu Cho;Nam-Sun Son
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.188-188
    • /
    • 2022
  • 선박의 운용 효율을 높일 수 있는 방법인 무인 운용체계는 근래에 많은 관심을 받고 연구되어 왔다. 특히 무인수상선과 무인수중체의(USV-AUV)의 복합 운용 분야는 그 동안 어려움이 있었던 심해저 탐사 및 특수 임무 활용에 용이하여 많은 연구가 수행되고 있다. 본 연구에서는 쌍동선 형태인 무인수상선이 모선이 되고 무인수중체가 결합하여 충전하고 다시 진수하여 원거리 및 심해저 조건에서 무인수중체가 운용 가능하도록 하는 시스템의 일부인 USV-AUV의 docking을 위한 DP 시스템을 개발하고 선박해양플랜트연구소 해양공학수조에서 모형시험을 통해 이를 검증하였다. 또한, 실제 제작된 무인쌍동선과 추진 시스템을 활용하여 모형시험을 통해 검증한 DP 알고리즘을 적용하여 화성 제부도 앞바다에서 실선 DP 테스트를 수행하였다. 실 해역에서의 DP 시스템 테스트는 정확한 환경 조건의 계측 및 구현이 어려워 모형시험과 같은 정량적인 평가는 어렵지만, 정성적으로 DP 시스템이 작동하는 것을 확인할 수 있었다.

  • PDF

A Summary on the System for Drilling Drillship (특수선 Drilling Drillship System 개요)

  • Kim, Deok-Ki
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.229-230
    • /
    • 2006
  • 해상플랫폼설치가 불가능한 심해지역이나 파도가 심한 해상에서 원유를 발굴하는 선박형태의 시추설비인데, 심해에서의 시추능력은 물론 기동성까지 겸비한 고부가치선으로서 최근 고(高)유가에 따라 발주가 늘어나고 있는 해양분야의 대표적인 성장엔진으로, 파도와 바람이 심한 해상에서도 안정적 시추가 가능한 최첨단 자동위치 제어시스템, 드릴링장비, 통합제어시스템 등, 드릴쉽이 갖추고 있는 시스템에 대해 간단히 설명한다.

  • PDF

Dynamic Analysis of Floating Bodies Considering Multi-body Interaction Effect (다물체 연성효과를 고려한 부유체의 동적거동 안전성 해석)

  • Kim, Young-Bok;Kim, Moo-Hyun;Kim, Yong-Yook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.659-666
    • /
    • 2009
  • Recently, there are several problems in space, contiguity and facility of the existing harbors issued due to the trend of enlarging the container capacity of the large container vessel, the Mobile Harbor has been proposed conceptually as an effective solution for those problems. This concept is a kind of transfer loader of the containers from the large container ship, which is a floating barge with a catamaran type in the underwater part, and so prompt maneuverability and work effectiveness. For the safe mooring of two floating bodies, a container and the mobile harbor, in the near sea apart from the quay, a robot arm mooring facility specially devised would be designed and verified through comparison study under various environmental sea condition in the inner and outer harbor. DP system (Dynamic Positioning System) using the azimuth thruster and a pneumatic fender, etc, will be considered as a next research topic for the mooring security of multi-body floaters.

Analysis of Dynamic Positioning System Based on Self-Tuning Control (자기동조 제어기를 이용한 위치확보 시스템에 관한 연구)

  • Sang-M.,Lee;Pan-M.,Lee;Sa-Y.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.32-40
    • /
    • 1989
  • Dynamic ship positioning(DP) system is used to keep the position and heading of a ship, or a floating platform, above a pre-selected site on the seabed by using thrusters. This paper presents a control system based on filtering technique and optimal control theory. The planar motions of a vessel are assumed to consist of low frequency(LF) component and high frequency(HF) one. The former is mainly due to thrusters, current, wind and second order wave forces, while the latter is mainly due to first order oscillatory component of the wave force. Furthermore position measurement signals include the noise. By means of self-tuning filter and Kalman filter techniques, LF motion estimates and HF ones are seperately achieved from the position measurements of the vessel. The estimated LF motions are used as input to the feedback loops. The total thruster power is minimized using the Linear Quadratic Gaussian control theory. The performance of the vessel with the DP system is investigated by computer simulation.

  • PDF

Design of Field Development Ship for Ultra-Deepwater (초심해 용 유전개발선의 설계)

  • Park, H.S.;S.W. Yoon;I.M. Song
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.87-92
    • /
    • 2001
  • This technical note is intended to introduce a state-of-the-art offshore construction vessel. This unique vessel is for multi-purpose Field Development Ship (FDS) for deepwater to ultra-deepwater. The FDS is a construction vessel with dynamic positioning (DP) system intended to develop offshore oil and gas field in water depth up to 3000 m. The design criteria and main capacities of the vessel are discussed.

  • PDF

Hydrodynamic Interaction Analysis of Floating Multi-body System

  • Kim, Young-Bok;Kim, Moo-Hyun;Kim, Yong-Yook;Kim, Young-Hun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.198-204
    • /
    • 2011
  • Recently, several problems have occurred in the space, infra-structure, and facility of the contiguity of existing harbors due to the trend of enlarged container vessels. In this regard, the Mobile Harbor has been proposed conceptually in this study as an effective solution for these problems. The concept is that of a transfer loader that transfers containers from a large container ship to the harbor on land, and is a catamaran type floating barge. The catamaran-type vessel is well known for its advantage in maneuverability, resistance, and effectiveness for working on board. For the safe and effective operation of the two floating bodies (a container ship and the mobile harbor in the near sea detached from the quay), robot arms, novel crane systems, and pneumatic fenders are specially devised with an additional mooring facility or DP (dynamic positioning) system. In this study, this concept is to be verified through comparison and simulation studies under various environmental conditions. It is shown that the proposed concept is in general feasible but there are several areas for further investigation and improvement.

A Study on Human Error of DP Vessels LOP Incidents (DP 선박 위치손실사고의 인적오류에 관한 연구)

  • Chae, Chong-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.515-523
    • /
    • 2015
  • This study reviewed 612 DP LOP(Loss of Position) incident reports which submitted to IMCA from 2001~2010 and identified 103 human error caused incidents and classified it through HFACS. And, this study analysis of conditional probability of human error on DP LOP incidents through application of bayesian network. As a result, all 103 human error related DP LOP incidents were caused by unsafe acts, and among unsafe acts 70 incidents(68.0 %) were related to skill based error which are the largest proportion of human error causes. Among skill based error, 60(58.3%) incidents were involved inadvertent use of controls and 8(7.8%) incidents were involved omitted step in procedure. Also, 21(20.8%) incidents were involved improper maneuver because of decision error. Also this study identified that unsafe supervision(68%) is effected as the largest latent causes of unsafe acts through application to bayesian network. As a results, it is identified that combined analysis of HFACS and bayesian network are useful tool for human error analysis. Based on these results, this study suggest 9 recommendations such as polices, interpersonal interaction, training etc. to prevent and mitigate human errors during DP operations.

Study for Operation Method of Underwater Cable and Pipeline Burying ROV Trencher using Barge and Its Application in Real Construction

  • Kim, Min-Gyu;Kang, Hyungjoo;Lee, Mun-Jik;Cho, Gun Rae;Li, Ji-Hong;Yoon, Tae-Sagm;Ju, Jaeheung;Kwak, Han-Wan
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.361-370
    • /
    • 2020
  • We developed a heavy-duty work class ROV trencher named URI-T (Underwater robot it's trencher) that can conduct burial and maintenance tasks for underwater cables and small diameter pipelines. It requires various supporting systems, including a dynamic positioning (DP) vessel, launch and recovery system (LARS), A-frame, and winch in order to perform burial tasks because of its dimensions (6.5 m × 5.0 m × 4.5 m, 20 t) and the tough working environment. However, operating a DP vessel has disadvantages as it is expensive to rent and operate and it is difficult to adjust the working schedule for some domestic coast construction cases. In this paper, we propose a method using a barge instead of a DP vessel to avoid the above disadvantages. Although burying the cable and pipeline using a barge has lower working efficiency than a DP vessel, it can save construction expenses and does not require a large crew. The proposed method was applied over two months at the construction of the water supply in Yokji-do, and the results were verified.

해난사고 분석을 위한 Full-mission Shiphandling Simulator(FMSS) - 한국해양수산연수원 FMSS를 기준으로 -

  • Lee, Dong-Seop
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.71-73
    • /
    • 2011
  • 다기능 선박조종시뮬레이터(Full-mission Shiphandling Simulator)는 항해사, 선장 및 도선사의 자질 향상을 위한 교육뿐만 아니라 항만개발을 위한 사전 검토와 해난사고 발생 시, 원인규명을 위한 분석에도 이용되고 있다. 한국해양수산연수원에서는 이러한 목적을 위하여 2011년 2월 28일 Russia Transas 제품의 선박조종시뮬레이터를 설치 완료 하였다. 이 FMSS는 적어도 360도의 수평시각을 가진 대형 구형화면에 여섯(6) 자유도 운동을 하는 본선 및 타선을 실시간으로 표현하는 photo-realistic high resolution computer graphic visual system과 같은 최신기술을 사용하는 가장 현대화된 최고급 해상용 시뮬레이터로 해난 사고 윈인규명을 위한 분석 연구 목적을 위하여 광범위한 출처로부터 모델시험과 자료의 신뢰할만한 공식적 기록들에 근거한 매우 정확한 수력학적 선박 모델링 소프트웨어로 이루어졌다. 여기서는 이 FMSS의 형태와 복잡성을 상세하게 소개한다.

  • PDF