• 제목/요약/키워드: DOTS

검색결과 782건 처리시간 0.022초

Effect of Photo-darkening on the Response Time of PbSe Quantum-dots Doped Optical Fiber

  • Watekar, Pramod R.;Lin, Aoxiang;Ju, Seong-Min;Han, Won-Taek
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2008년도 동계학술발표회 논문집
    • /
    • pp.251-252
    • /
    • 2008
  • We fabricated silica glass optical fiber containing PbSe quantum-dots (QD) of average size 3.2 nm. The response time of the PbSe-QD doped optical fiber was measured to be around 200 ps. However, after exposure to 1064 nm laser emission for 15 minutes, the response time dramatically reduced to around 2.5 ps, which may be due to photo-darkening effect.

  • PDF

Magnetization reversal process of the nanosized elliptical permalloy magnetic dots with various aspect ratios

  • Lee, J. H.;K. H. Oh;Kim, K. Y.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2002년도 동계연구발표회 논문개요집
    • /
    • pp.186-187
    • /
    • 2002
  • Recently, there has been much interest in magnetic thin film patterned in submicron scale because of possible ultrahigh density storage media or logical device applications [1-3]. Various geometries such as rectangle, circle, ring and ellipse type dots have been studied to find the shape showing stable switching behavior from repeated cycles. However, rectangle and circle types may not be suitable for device applications because they have two uncontrollable different magnetization reversal modes: C state and S state, resulting in different coercivity and irreproducible switching[4]. (omitted)

  • PDF

Recent Progress in the Development of Organometallic Complexes, Inorganic Phosphors and Quantum Dots for White Light Emitting Devices

  • Raja, Inam ul Haq;Lee, So-Ha
    • 한국응용과학기술학회지
    • /
    • 제25권2호
    • /
    • pp.175-195
    • /
    • 2008
  • Recent years have brought remarkable developments in white light emitting devices (WLEDs) and white organic light-emitting devices (WOLEDs). However, their efficiency, CIE values, CRI and lifetime are still not ideal. This review covers detailed discussion about syntheses of organometallic complexes, inorganic phosphors and quantum dots used in WLEDs, WOLEDs and their electroluminescent properties until December 2007.

Energy separation and carrier-phonon scattering in CdZnTe/ZnTe quantum dots on Si substrate

  • 만민탄;이홍석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.191.2-191.2
    • /
    • 2015
  • Details of carrier dynamics in self-assembled quantum dots (QDs) with a particular attention to nonradiative processes are not only interesting for fundamental physics, but it is also relevant to performance of optoelectronic devices and the exploitation of nanocrystals in practical applications. In general, the possible processes in such systems can be considered as radiative relaxation, carrier transfer between dots of different dimensions, Auger nonradiactive scattering, thermal escape from the dot, and trapping in surface and/or defects states. Authors of recent studies have proposed a mechanism for the carrier dynamics of time-resolved photoluminescence CdTe (a type II-VI QDs) systems. This mechanism involves the activation of phonons mediated by electron-phonon interactions. Confinement of both electrons and holes is strongly dependent on the thermal escape process, which can include multi-longitudinal optical phonon absorption resulting from carriers trapped in QD surface defects. Furthermore, the discrete quantized energies in the QD density of states (1S, 2S, 1P, etc.) arise mainly from ${\delta}$-functions in the QDs, which are related to different orbitals. Multiple discrete transitions between well separated energy states may play a critical role in carrier dynamics at low temperature when the thermal escape processes is not available. The decay time in QD structures slightly increases with temperature due to the redistribution of the QDs into discrete levels. Among II-VI QDs, wide-gap CdZnTe QD structures characterized by large excitonic binding energies are of great interest because of their potential use in optoelectronic devices that operate in the green spectral range. Furthermore, CdZnTe layers have emerged as excellent candidates for possible fabrication of ferroelectric non-volatile flash memory. In this study, we investigated the optical properties of CdZnTe/ZnTe QDs on Si substrate grown using molecular beam epitaxy. Time-resolved and temperature-dependent PL measurements were carried out in order to investigate the temperature-dependent carrier dynamics and the activation energy of CdZnTe/ZnTe QDs on Si substrate.

  • PDF

Construction Partnering on Alternative Project Delivery Methods: A Case Study of Construction Manager/General Contractor Partnered Transportation Projects

  • Adamtey, Simon A.;Kereri, James O.
    • Journal of Construction Engineering and Project Management
    • /
    • 제9권4호
    • /
    • pp.1-15
    • /
    • 2019
  • Since its adoption by the transportation sector in the early 1990s, partnering has been broadly used with the traditional delivery method by many agencies with significant reported benefits. During the same era, a number of transportation agencies (DOTs) started experimenting with a wide variety of alternative project delivery methods (APDMs) aimed at improving the delivery of highway construction projects. The effect of collaborative working strategies such as partnering, together with the APDMs have become somehow interrelated posing a potential challenge on how to effectively integrate partnering as a concept in the APDMs. The salient question has been if the collaborative nature of these APDMs has affected how partnering is being used by state DOTs. Through an extensive literature review, analysis of 32 CMGC RFPs/RFQs and review of three CMGC case studies, the study found that there is limited information in state DOT documents that show procedures on the usage of partnering with CMGC projects. Majority of DOTs are relying on the inherent nature of the CMGC contract to promote healthy collaborative practices and there is the need to consider partnering during preconstruction and construction separately to cater for any personnel change over. The study also revealed that partnering may become less important at the construction phase due to overlap between partnering and CMGC practices. In support of this finding, a CMGC partnering model was developed that can be adopted by DOTs. This paper contributes to both research and practice by expanding the existing knowledge on partnering on APDMs.

블루 노이즈 마스크와 분산 CMY 디더링을 이용한 하프토닝 (Halftoning Method Using the Dispersed CMY Dithering and Blue Noise Mask)

  • 김윤태;조양호;이철희;하영호
    • 대한전자공학회논문지SP
    • /
    • 제40권1호
    • /
    • pp.1-9
    • /
    • 2003
  • 본 논문에서는 밝은 영역에서 K(Black) 대신에 C(Cyan), M(Magenta), Y(Yellow)를 공간적으로 흩어서 출력하는 새로운 방법을 제안하였다. 어두운 영역에서 검은 점의 겹침은 밝기값을 감소시키며 밝은 영역에서의 검은 점은 인간 시각 체계에 민감하다. 따라서 이러한 문제를 해결하기 위해서 하나의 마스크로 CMY를 동시에 사용하는 새로운 방법이 제안되었으며, CMY 점이 검은 점 대신에 밝은 영역에서 공간적으로 흩어서 출력된다. 그리고 어두운 영역의 그레이 값을 고려하기 위해서 톤 곡선 연결을 하였다. 기존의 방법에서 BNM(Blue Noise Mask)는 높은 낟알 특성(granularity)과 밝기값 범위가 좁은데 반하여, 제안한 방법은 낮은 낟알 특성과 넓은 밝기 범위와 높은 대비도를 가진다. 제안한 방법이 기존의 방법보다 공간적으로 다른 리치에 세 배에 해당하는 점을 사용하기 때문이다. 따라서 제안한 방법은 더 많은 공간적인 정보를 표현하고 기존의 BNM 방법과 비교하여 더욱 원 영상과 유사하게 표현할 수 있다.

Structural Characteristics on InAs Quantum Dots multi-stacked on GaAs(100) Substrates

  • Roh, Cheong-Hyun;Park, Young-Ju;Kim, Eun-Kyu;Shim, Kwang-Bo
    • 마이크로전자및패키징학회지
    • /
    • 제7권1호
    • /
    • pp.25-28
    • /
    • 2000
  • 분자선에피택시법에 의하여 GaAs(100)기판 위에 InAs 자발형성양자점을 성장하였다. InAs 양자점은 1, 3, 6, 10, 15 및 20층 등으로 다양하게 적층되어졌고, GaAs 층과 InAs 양자점 층은 각각 20 MLs와 2 MLs의 두께를 갖도록 하였다. 이 양자점의 나노구조적 특성은 PL과 STEM을 사용하여 분석하였다. 가장 높은 PL 강도는 6층의 적층구조를 갖는 시편에서 나타났고 PL 피크의 에너지가 적층회수가 증가함에 따라 분리됨을 알 수 있었다. STEM분석결과, 6충의 적층구조에서는 결함이 거의 없이 수직으로 형성된 구조를 보여준 반면에 10층 이상의 적층구조를 가질 때 그 성장 방향에 따라 volcano형상을 갖는 결함이 수직하게 성장되어졌다.

  • PDF

Green synthesis of fluorescent carbon dots from carrot juice for in vitro cellular imaging

  • Liu, Yang;Liu, Yanan;Park, Mira;Park, Soo-Jin;Zhang, Yifan;Akanda, Md Rashedunnabi;Park, Byung-Yong;Kim, Hak Yong
    • Carbon letters
    • /
    • 제21권
    • /
    • pp.61-67
    • /
    • 2017
  • We report the use of carrot, a new and inexpensive biomaterial source, for preparing high quality carbon dots (CDs) instead of semi-conductive quantum dots for bioimaging application. The as-derived CDs possessing down and up-conversion photoluminescence features were obtained from carrot juice by commonly used hydrothermal treatment. The corresponding physiochemical and optical properties were investigated by electron microscopy, fluorescent spectrometry, and other spectroscopic methods. The surfaces of obtained CDs were highly covered with hydroxyl groups and nitrogen groups without further modification. The quantum yield of as-obtained CDs was as high as 5.16%. The cell viability of HaCaT cells against a purified CD aqueous solution was higher than 85% even at higher concentration ($700{\mu}g\;mL^{-1}$) after 24 h incubation. Finally, CD cultured cells exhibited distinguished blue, green, and red colors, respectively, during in vitro imaging when excited by three wavelength lasers under a confocal microscope. Offering excellent optical properties, biocompatibility, low cytotoxicity, and good cellular imaging capability, the carrot juice derived CDs are a promising candidate for biomedical applications.

Study on UV Opto-Electric Properties of ZnS:Mn/ZnS Core-Shell QD

  • Lee, Yun-Ji;Cha, Ji-Min;Yoon, Chang-Bun;Lee, Seong-Eui
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.55-60
    • /
    • 2018
  • In this study, quantum dots composed of $Mn^{2+}$ doped ZnS core and ZnS shell were synthesized using MPA precursor at room temperature. The ZnS: Mn/ZnS quantum dots were prepared by varying the content of MPA in the synthesis of ZnS shells. XRD, Photo-Luminescence (PL), XPS and TEM were used to characterize the properties of the ZnS: Mn/ZnS quantum dots. As a result of PL measurement using UV excitation light at 365 nm, the PL intensity was found to greatly increase when MPA was added at 15 ml, compared to the case with no MPA; the PL peaks shifted from 603 nm to 598 nm. A UV sensor was fabricated by using a sputtering process to form a Pt pattern and placing a QD on the Pt pattern. To verify the characteristics of the sensor, we measured the electrical properties via irradiation with UV, Red, Green, and Blue light. As a result, there were no reactions for the R, G, and B light, but an energy of 3.39 eV was produced with UV light irradiation. For the sensor using ZnS: Mn/ZnS quantum dots, the maximum current (A) value decreased from $4.00{\times}10^{-11}$ A to $2.62{\times}10^{-12}$ A with increasing of the MPA content. As the MPA content increases, the PL intensity improves but the electrical current value dropped because of the electron confinement effect of the core-shell.