• Title/Summary/Keyword: DOMINANT SPECIES

Search Result 3,083, Processing Time 0.032 seconds

Phytoplankton community in the Seoul passage section of the Han River in 2012 (2012년 한강 서울통과 구간의 식물플랑크톤 군집 특성)

  • Lee, Yeon-Su;Kim, Taehee;Lee, Man-Duck;Ki, Jang-Seu
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.2
    • /
    • pp.299-307
    • /
    • 2020
  • This study reported on the phytoplankton community and seasonal changes in the Seoul passage section and downstream in the Han River in 2012. Field samples were collected monthly from the upper (Paldang), middle (Cheongdam), and downstream(Seongsan) areas of the Seoul passage section. Water temperature, DO, pH, and conductivity were measured at each station. All environmental factors measured were recorded similarly at the three stations. The water temperature ranged from 2 to 30℃ and the dissolved oxygen ranged from 4.8 to 9.1 mg L-1, showing typical patterns of temperate regions. The phytoplankton cell concentrations ranged from 990 cells mL-1 (Paldang, December) to 2.9×104 cells mL-1 (Seongsan, March), and the chlorophyll-a content showed similar patterns to the cell numbers. The phytoplankton community was comprised of 75 genera and 95 species, including 37 diatoms, 29 Chlorophyta, 11 cyanobacteria, and two dinoflagellates. The number of species that appeared seasonally varied greatly, from nine species (Paldang, May) to 35 species (Cheongdam, December). Diatoms were the most dominant in all stations and seasons, except in summer. In contrast, chlorophytes and cyanobacteria showed sporadic high numbers in the summer and fall seasons. Four diatoms Stephanodiscus hantzschii f. tenuis, S. hantzschii, Fragilaria sp., and Aulacoseira spp., a chlorophyte Actinastrum hantzschii, and a cyanobacterium Microcystis sp. were each present in proportions greater than 10%. This study provides fundamental data from phytoplankton communities and environmental factors in the Han River for understanding water quality for long-term environmental monitoring.

Temporal Changes of Community Structure in two Subtidal Polychaete Assemblages in Kwang-yang Bay, Korea (광양만 조하대의 두 다모류 군집 구조의 시간에 따른 변화)

  • 정래홍;홍재상
    • 한국해양학회지
    • /
    • v.30 no.5
    • /
    • pp.390-402
    • /
    • 1995
  • Bimonthly sampling was carried out over the period February 1983 to April 1985 at two stations in Kwang-yang Bay, Korea, in order to study the temporal changes of benthic ploychaete communities. In addition, an important focus of the study was the large-scale reclamation and dredging operations that were taking place for industrial purposes during the study period. The muddy station, located on the main channel, showed high mud content (94%), whereas the sandy station, situated on the north channel of Myodo, demonstrated mud content of 42%. At the muddy station, the number of species and individuals were highest in the early sampling stage, but markedly declined in October 1983, and then gradually increased as in the early state. At the sandy station, the number of species highly oscillated during the entire period. The density was affected by the pectinated Lagis bocki showing particulary high density in February 1983 and 1984. However, the high density in the winter time did not occur in February 1985. The analysis of similarities and clusterings between communities were carried out to evaluate temporal changes in community structure. Significant changes occurred during the study period in the community structures at both stations, but each maintained different patterns of species dominance over time. At the muddy station, this transitionary phase was found in October 1983 but in December 1984 at the sandy station. Comparisons with earlier communities suggest that faunal changes in the dominant species composition occurred from Lumbrineris longifolia to Heteromastus filiformis over this time period. The colonization of this opportunistic pioneer, H, filiformis, seems to manifest environmental disturbances in this bay area.

  • PDF

Understanding of Phytoplankton Community Dynamics Through Algae Bioassay Experiment During Winter Season of Jinhae bay, Korea (생물검정실험을 통한 동계 진해만 식물플랑크톤의 군집 변동 특성 파악)

  • Hyun, Bong-Gil;Shin, Kyoung-Soon;Kim, Dong-Sun;Kim, Young-Ok;Joo, Hae-Mi;Baek, Seung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.1
    • /
    • pp.27-38
    • /
    • 2011
  • The distributions of phytoplankton assemblages and environmental factors in Jinhae Bay and their relationships were investigated to estimate the potential limiting nutrient for phytoplankton growth and community structure. In situ algal bioassay experiments were also conducted to assess the species-specific characteristics in phytoplankton responses under different nutrient conditions (control, N(+) and P(+) treatment). During the study periods, bacillariophyceae and cryptophyceae occupied more than 90% of total phytoplankton assemblages. Phytoplankton standing crops in the inner part of Masan Bay were higher than that of Jinhae Bay. The DIN:DIP ratio, pH and transparency showed the significant positive correlation with phytoplankton biomass. According to cluster and multidimensiolnal scaling (MDS) analysis based on phytoplankton community data from each station, the bay was divided into three groups. The first group included stations from the south-western part of Jinhae bay where cryptophyta species were dominated. The second group was distinguished from inner stations in Masan Bay. These stations showed low transpancy and high DIN:DIP ratio. The other cluster included the stations from the eastern part and central part of Jinhae Bay, which was characterized by the high DSi:DIP ratio and dominant of diatom species. Phosphorous (P) was limited in Masan Bay due to significantly increases in the phytoplankton abundances. Based on stoichiometric limitation and algal bio-assay in Jinhae Bay, nitrogen (N) was a major limiting factor for phytoplankton production. However, silicate (Si) was not considered as limiting factor, since Si/DIN and Si/P ratio and absolute concentration of nutrient did not create any potential stoichiometric limitation in the bay. This implies that high Si availability in winter season contributes favorably to the maintenances of diatom species.

Vegetation Strucure of Hwangjeong Wetland around Geumho River (금호강 황정 습지의 식생 구조)

  • Lee, Pal-Hong;Kim, Cheol-Soo;Kim, Tae-Geun;Oh, Kyung-hwan
    • Journal of Wetlands Research
    • /
    • v.7 no.4
    • /
    • pp.67-80
    • /
    • 2005
  • Vegetation structure of the vascular plants was investigated from April 2003 to August 2003 in Hwangjeong wetland around Geumho River, Yeongcheon-si, Gyeongsangbuk-do, Korea. Actual vegetation of Hwangjeong wetland largely can be classified by the floristic composition and the physiognomy into 12 communities; Ambrosia artemisiifolia var. elatior, Humulus japonicus, Miscanthus sacchariflorus, Phragmites japonica, Zizania latifolia-Miscanthus sacchariflorus, Zizania latifolia-Nymphoides peltata, Miscanthus sacchariflorus-Phragmites japonica, Phragmites communis-Phragmites japonica, Phragmites japonica-Salix gracilistyla, Salix koreensis-Salix glandulosa, Salix nipponica-Salix koreensis, and Phragmites japonica-Zizania latifolia. Among them, the distribution area of the Phragmites japonica community was the largest as 49.46 ha(11.03%). The dominant vegetation type was Phragmites japonica community and Ambrosia artemisiifolia var. elatior community based on the phytosociological method, and Phragmites japonica community was classified into two subcommunities; Nymphoides peltata subcommunity and Salix glandulosa subcommunity. Differential species of Phragmites japonica community were Phragmites japonica, Miscanthus sacchariflorus, Persicaria thunbergii, Oenanthe javanica, Leersia oryzoides var. japonica, and Rorippa indica; differential species of Ambrosia artemisiifolia var. elatior community were Ambrosia artemisiifolia var. elatior, Setaria glauca, Commelina communis, Cyperus orthostachyus, Digitaria sanguinalis, Xanthium strumarium, Erigeron annuus, Erigeron canadensis, Kummerowia striata, Trifolium repens, and Medicago sativa; differential species of Nymphoides peltata subcommunity were Nymphoides peltata, Zizania latifolia, Scirpus tabernaemontani, and Eleocharis mamillata var. cyclocarpa; differential species of Salix glandulosa subcommunity were Salix glandulosa, Salix koreensis, and Salix gracilistyla. It was expected that Hwangjeong wetland is worthy of conservation contributed purifying water pollution, giving habitats of many lifes, and providing beautiful scenes of Geumho River.

  • PDF

Seasonal distribution of phytoplankton and environmental factors in the offshore waters of Dokdo: Comparison between 2018 and 2019 (독도 연안 식물플랑크톤의 계절적 분포 특성과 환경요인: 2018년과 2019년 비교)

  • Lee, Minji;Kim, Yun-Bae;Kang, Jung Hoon;Park, Chan Hong;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.1
    • /
    • pp.47-60
    • /
    • 2020
  • To assess the characteristics of phytoplankton community structures related to environmental factors, seasonal surveys were conducted in the vicinity of Dokdo. In 2019, phytoplankton of four phyla and 69 species were observed. During winter, unidentified nanoflagellates dominated, with an average of 3.19×104 cells L-1. In spring, unidentified nanoflagellates occupied about 50% of the composition and a variety of dinoflagellates appeared. The summer phytoplankton population showed very low abundance. In autumn, various species of Chaetoceros appeared, along with diatoms, such as Bacteriastrum spp., Guinardia striata, and Pseudo-nitzschia spp. In addition, tropical species Amphisolenia sp. and Ornithocercus sp. were observed in both 2018 and 2019. The diversity was high in the summer of 2018 and the winter of 2019 and the characteristics of each index varied. Cluster analysis was divided into four groups according to species and population characteristics regardless of the season. The stratification of spring was particularly weak. In the autumn of 2018, the water mass was stabilized in the same way as in the summer, which is considered a suitable condition for phytoplankton growth. However, in 2019, the water masses were mixed, resulting in a low population. In a phytoplankton comparison, the dominant group showed seasonal differences, except for summer when the population was low, and the difference was most pronounced in autumn. Therefore, the waters surrounding Dokdo have different environmental and ecological characteristics from the East Sea, but the seasonal characteristics of each year are considered to be different depending on the topography, various currents, the island effect, and other factors.

Diversity and Characteristics of Rhizosphere Microorganisms Isolated from the Soil around the Roots of Three Plants Native to the Dokdo Islands (독도의 자생식물의 근권에서 분리한 원핵 미생물의 다양성 분석)

  • Kim, Ye-Eun;Yoon, Hyeokjun;You, Young-Hyun;Kim, Hyun;Seo, Yeonggyo;Kim, Miae;Woo, Ju-Ri;Nam, Yoon-Jong;Irina, Khalmuratova;Lee, Gyeong-Min;Song, Jin-Ha;Jin, Young-Ju;Kim, Jong-Guk;Seu, Young-Bae
    • Journal of Life Science
    • /
    • v.24 no.4
    • /
    • pp.461-466
    • /
    • 2014
  • Three plant species, Aster sphathulifolius, Sedum oryzifolium, and Lysimachia mauritiana, native to the Dokdo Islands in South Korea, were examined for rhizosphere microorganisms by using 16S rDNA sequences. Nine species of rhizosphere microorganisms were isolated from the three native plant species, respectively. Phylogenetic analysis showed that the microorganisms could be classified into 19 species belonging to four phyla (Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria), and the characteristics of the microbes were confirmed. Rhizosphere microorganisms from the six orders (Bacillales, Corynebacteriales, Flavobacteriales, Micrococcales, Oceanospirillales, and Rhodobacterales) were isolated from S. oryzifolium. From L. mauritiana, microbes belonging to the seven orders (Bacillales, Flavobacteriales, Micrococcales, Oceanospirillales, Rhizobiales, and Rhodobacterales) were isolated. From A. sphathulifolius, the six orders of rhizosphere microorganisms (Alteromonadales, Bacillales, Corynebacteriales, Flavobacteriales, Micrococcales, and Rhizobiales) were isolated. These data showed that Actinobacteria and Proteobacteria were the dominant phyla for the rhizosphere of all three plants. To confirm the bacterial diversity in rhizospheres, Shannon's diversity index (H') was used at the genus level. In these data, the rhizosphere from S. oryzifolium and L. mauritiana had more diverse bacteria compared to that from A. sphathulifolius.

Community Distribution on Mountain Forest Vegetation of the Hwangjangsan Area in the Worak National Park, Korea (월악산국립공원 황장산 일대 삼림식생의 군락분포에 관한 연구)

  • Lee, Jung-Yun;Oh, Jang-Geun;Jung, Se-Hoon;Kim, Ha-Song
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.203-211
    • /
    • 2015
  • Forest vegetation of Hwangjangsan (1,077.3 m) in Woraksan National Park is classified into mountain forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, mountain valley forest, coniferous forest, riparian forest, afforestation and other vegetation. Including 55 communities of mountain forest vegetation and 4 communities of other vegetation, the total of 59 communities were researched; mountain forest vegetation classified by physiognomy classification are 28 communities deciduous broad-leaved forest, 12 communities of mountain valley forest, 3 communities of coniferous forests, 2 communities of riparian forest, 10 afforestation and 4 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica and Quercus variabilis communities account for 65.928 percent of deciduous broad leaved forest, Fraxinus rhynchophylla - Quercus mongolica community takes up 41.459 percent of mountain valley forest, Pinus densiflora community holds 86.100 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Pinus densiflora, Quercus variabilis, Fraxinus rhynchophylla, and Quercus serrata are distributed as dominant species of the uppermost part in a forest vegetation region in Woraksan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Quercus variabilis, and Fraxinus rhynchophylla which are climax species in the area.

Community Distribution on Forest Vegetation of the Geochilbong Area in the Deogyusan National Park, Korea (덕유산 국립공원 거칠봉 일대 삼림식생의 군락분포에 관한 연구)

  • Oh, Jang-Geun;Kim, Chang-Hwan;Lee, Nam-Sook;Gin, Yu-Ri
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.449-459
    • /
    • 2013
  • Forest vegetation of Geochilbong (1,177 m) in Deogyusan National Park is classified into mountain forest vegetation and flatland forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, valley forest, coniferous forest, afforestation and etc., while riparian forest was found under the category of flatland forest vegetation. Including 89 communities of mountain forest vegetation and 4 communities of other vegetation, the total of 93 communities were researched; the distributed colonies classified by physiognomy classification are 32 communities deciduous broadleaved forest, 21 communities of valley forest, 12 communities of coniferous forests, 24 afforestation and 4 other communities. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus serrata, Quercus variabilis communities account for 56.54 percent of deciduous broad-leaved forest, Fraxinus mandshurica, Cornus controversa community takes up 46.58 percent of mountain valley forest, Pinus densiflora community holds 74.98 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Quercus serrata, Quercus variabilis, Fraxinus mandshurica, Cornus controversa, Pinus densiflora are distributed as dominant species of the uppermost part in a forest vegetation of Geochilbong in Deogyusan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Carpinus laxiflora and Fraxinus mandshurica which are climax species in the area. However, the distribution rate of deciduous broad-leaved forest seems to increase gradually due to global warming and artificial disturbance.

Community Distribution on Forest Vegetation of the Namdeogyusan Area in the Deogyusan National Park, Korea (덕유산 국립공원 남덕유산 일대 삼림식생의 군락분포에 관한 연구)

  • Oh, Jang-Geun;Kim, Chang-Hwan;Kang, Eun-Ok;Gin, Yu-Ri
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.440-448
    • /
    • 2013
  • Forest vegetation of Namdeogyusan (1,507 m) in Deogyusan National Park is classified into mountain forest vegetation and flatland forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, valley forest, coniferous forest, afforestation and other vegetation. Including 45 communities of mountain forest vegetation and 8 communities of other vegetation, the total of 53 communities were researched; mountain forest vegetation classified by physiognomy classification are 22 communities deciduous broad-leaved forest, 11 communities of valley forest, 5 communities of coniferous forests, 7 afforestation and 8 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus serrata and Quercus variabilis communities account for 79.30 percent of deciduous broad-leaved forest, Fraxinus mandshurica community takes up 82.96 percent of mountain valley forest, Pinus densiflora community holds 53.31 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Fraxinus mandshurica, Quercus serrata, Pinus densiflora, and Quercus variabilis are distributed as dominant species of the uppermost part in a forest vegetation region in Deogyusan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Carpinus laxiflora and Fraxinus mandshurica which are climax species in the area.

Temporal and Spatial Variation of Polychaete Community in Kwangyang Bay, Southern Coast of Korea (광양만 다모류군집의 시.공간적 변화)

  • 신현출;고철환
    • 한국해양학회지
    • /
    • v.25 no.4
    • /
    • pp.205-216
    • /
    • 1990
  • This study was carried out to investigate the composition and the distribution of the polychaete community in Kwangyang Bay during 1987-1988, and to deduce causal factors of temporal changes in community by the comparison with the results of 1982 (Choi, 1984). In the present study, the Polychaetes comprised a total of 79 species, and had a mean density of 520 ind. $.$m/SUP -2/. They showed high abundance and species diversity in the main tidal channel and the north channel of Myodo. The most abundant polychaete was Lumbrineris longifolia (28.2%), and followed by Nephtys polybranchia (16.3%) and Stermaspis scutata (8.3%). Comparing the polychaete community in summer of 1987 with that in summer of 1982, Lagis bocki and Chone teres, the most dominant species in 1982, disappeared in 1987, while Lumbrineris longifolia, Nephtys polybranchia, Terebellides horikoshii, and Sternapis scutata experienced above twice increases in densities. the community in the north channel was distinguished from those in other regions by the high abundance of L. bocki in 1982, but was similar to that of the main channel by the disappearance of L. bocki in 1987. The community in the western inner bay was similar to that of the main channel in 1982, but became to be distinguished by the disappearance of l. longifolia and the high densities of S. scutata and Tharyx sp. in 1987. The temporal change in species composition and regional difference might be induced by the combined effects in the changes of hydrologic and sedimentary environments owing to the reclamation on the delta of Seomjing River and the dredging of the north chnnel.L.bocki in the north chnnel vanished after the habitat disturbance by the reclamation and dredging.S.scutata and Tharyxsp.dominated in the western inner bay because of the accumulationfo fine sediments through weakenend durrent flow by the obstruction of a new bank constructed on the delta.

  • PDF